IDEAS home Printed from https://ideas.repec.org/a/taf/tsysxx/v45y2014i3p598-615.html
   My bibliography  Save this article

A novel approach of mining strong jumping emerging patterns based on BSC-tree

Author

Listed:
  • Quanzhong Liu
  • Peng Shi
  • Zhengguo Hu
  • Yang Zhang

Abstract

It is a great challenge to discover strong jumping emerging patterns (SJEPs) from a high-dimensional dataset because of the huge pattern space. In this article, we propose a dynamically growing contrast pattern tree (DGCP-tree) structure to store grown patterns and their path codes arrays with 1-bit counts, which are from the constructed bit string compression tree. A method of mining SJEPs based on DGCP-tree is developed. In order to reduce the pattern search space, we introduce a novel pattern pruning method, which dramatically reduces non-minimal jumping emerging patterns (JEPs) during the mining process. Experiments are performed on three real cancer datasets and three datasets from the University of California, Irvine machine-learning repository. Compared with the well-known CP-tree method, the results show that the proposed method is substantially faster, able to handle higher-dimensional datasets and to prune more non-minimal JEPs.

Suggested Citation

  • Quanzhong Liu & Peng Shi & Zhengguo Hu & Yang Zhang, 2014. "A novel approach of mining strong jumping emerging patterns based on BSC-tree," International Journal of Systems Science, Taylor & Francis Journals, vol. 45(3), pages 598-615.
  • Handle: RePEc:taf:tsysxx:v:45:y:2014:i:3:p:598-615
    DOI: 10.1080/00207721.2012.724110
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207721.2012.724110
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207721.2012.724110?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Gang & Law, Rob & Vu, Huy Quan & Rong, Jia & Zhao, Xinyuan (Roy), 2015. "Identifying emerging hotel preferences using Emerging Pattern Mining technique," Tourism Management, Elsevier, vol. 46(C), pages 311-321.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tsysxx:v:45:y:2014:i:3:p:598-615. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TSYS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.