IDEAS home Printed from https://ideas.repec.org/a/taf/tsysxx/v45y2014i3p589-597.html
   My bibliography  Save this article

Collaborative filtering based on information-theoretic co-clustering

Author

Listed:
  • Changyong Liang
  • Yajun Leng

Abstract

Collaborative filtering is one of the most popular recommendation techniques, which provides personalised recommendations based on users’ tastes. In spite of its huge success, it suffers from a range of problems, the most fundamental being that of data sparsity. Sparsity in ratings makes the formation of inaccurate neighbourhood, thereby resulting in poor recommendations. To address this issue, in this article, we propose a novel collaborative filtering approach based on information-theoretic co-clustering. The proposed approach computes two types of similarities: cluster preference and rating, and combines them. Based on the combined similarity, the user-based and item-based approaches are adopted, respectively, to obtain individual predictions for an unknown target rating. Finally, the proposed approach fuses these resultant predictions. Experimental results show that the proposed approach is superior to existing alternatives.

Suggested Citation

  • Changyong Liang & Yajun Leng, 2014. "Collaborative filtering based on information-theoretic co-clustering," International Journal of Systems Science, Taylor & Francis Journals, vol. 45(3), pages 589-597.
  • Handle: RePEc:taf:tsysxx:v:45:y:2014:i:3:p:589-597
    DOI: 10.1080/00207721.2012.724109
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207721.2012.724109
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207721.2012.724109?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Surya Kant & Tripti Mahara, 2018. "Merging user and item based collaborative filtering to alleviate data sparsity," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 9(1), pages 173-179, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tsysxx:v:45:y:2014:i:3:p:589-597. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TSYS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.