IDEAS home Printed from https://ideas.repec.org/a/taf/tsysxx/v44y2013i9p1745-1761.html
   My bibliography  Save this article

An application of a discrete wavelet transform and a back-propagation neural network algorithm for fault diagnosis on single-circuit transmission line

Author

Listed:
  • A. Ngaopitakkul
  • S. Bunjongjit

Abstract

This article proposes an application of the discrete wavelet transform (DWT) and back-propagation neural networks (BPNN) for fault diagnosis on single-circuit transmission line. ATP/EMTP is used to simulate fault signals. The mother wavelet daubechies4 (db4) is used to decompose the high-frequency component of these signals. In addition, characteristics of the fault current at various fault inception angles, fault locations and faulty phases are detailed. The DWT is employed in extracting the high frequency component contained in the fault currents, and the coefficients of the first scale from the DWT that can detect fault are investigated, and the decision algorithm is constructed based on the BPNN. The results show that the proposed technique provides satisfactory results.

Suggested Citation

  • A. Ngaopitakkul & S. Bunjongjit, 2013. "An application of a discrete wavelet transform and a back-propagation neural network algorithm for fault diagnosis on single-circuit transmission line," International Journal of Systems Science, Taylor & Francis Journals, vol. 44(9), pages 1745-1761.
  • Handle: RePEc:taf:tsysxx:v:44:y:2013:i:9:p:1745-1761
    DOI: 10.1080/00207721.2012.670290
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207721.2012.670290
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207721.2012.670290?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Junxun Chen & Longsheng Cheng & Hui Yu & Shaolin Hu, 2018. "Rolling bearing fault diagnosis and health assessment using EEMD and the adjustment Mahalanobis–Taguchi system," International Journal of Systems Science, Taylor & Francis Journals, vol. 49(1), pages 147-159, January.
    2. Yumin Hsueh & Veeresha Ramesha Ittangihala & Wei-Bin Wu & Hong-Chan Chang & Cheng-Chien Kuo, 2019. "Condition Monitor System for Rotation Machine by CNN with Recurrence Plot," Energies, MDPI, vol. 12(17), pages 1-13, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tsysxx:v:44:y:2013:i:9:p:1745-1761. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TSYS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.