IDEAS home Printed from https://ideas.repec.org/a/taf/tsysxx/v44y2013i4p680-699.html
   My bibliography  Save this article

Performance of a class of multi-robot deploy and search strategies based on centroidal voronoi configurations

Author

Listed:
  • K.R. Guruprasad
  • Debasish Ghose

Abstract

This article considers a class of deploy and search strategies for multi-robot systems and evaluates their performance. The application framework used is deployment of a system of autonomous mobile robots equipped with required sensors in a search space to gather information. The lack of information about the search space is modelled as an uncertainty density distribution. The agents are deployed to maximise single-step search effectiveness. The centroidal Voronoi configuration, which achieves a locally optimal deployment, forms the basis for sequential deploy and search (SDS) and combined deploy and search (CDS) strategies. Completeness results are provided for both search strategies. The deployment strategy is analysed in the presence of constraints on robot speed and limit on sensor range for the convergence of trajectories with corresponding control laws responsible for the motion of robots. SDS and CDS strategies are compared with standard greedy and random search strategies on the basis of time taken to achieve reduction in the uncertainty density below a desired level. The simulation experiments reveal several important issues related to the dependence of the relative performances of the search strategies on parameters such as the number of robots, speed of robots and their sensor range limits.

Suggested Citation

  • K.R. Guruprasad & Debasish Ghose, 2013. "Performance of a class of multi-robot deploy and search strategies based on centroidal voronoi configurations," International Journal of Systems Science, Taylor & Francis Journals, vol. 44(4), pages 680-699.
  • Handle: RePEc:taf:tsysxx:v:44:y:2013:i:4:p:680-699
    DOI: 10.1080/00207721.2011.618327
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207721.2011.618327
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207721.2011.618327?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jing Bai & Guoguang Wen & Ahmed Rahmani & Yongguang Yu, 2015. "Distributed formation control of fractional-order multi-agent systems with absolute damping and communication delay," International Journal of Systems Science, Taylor & Francis Journals, vol. 46(13), pages 2380-2392, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tsysxx:v:44:y:2013:i:4:p:680-699. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TSYS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.