IDEAS home Printed from https://ideas.repec.org/a/taf/tsysxx/v44y2013i3p556-567.html
   My bibliography  Save this article

Demand forecasting of perishable farm products using support vector machine

Author

Listed:
  • Xiao Du
  • Stephen Leung
  • Jin Zhang
  • K.K. Lai

Abstract

This article presents a new algorithm for forecasting demand for perishable farm products, based on the support vector machine (SVM) method. Since SVMs have greater generalisation performance and guarantee global minima for given training data, it is believed that support vector regression will perform well for forecasting demand for perishable farm products. In order to improve forecasting precision (FP), this article quantifies the factors affecting the sales forecast of perishable farm products based on the fuzzy theory, which is suitable for real situations. Numerical experiments show that forecasting systems with SVMs and fuzzy theory outperform the radial basis function neural network, based on the criteria of day absolute error, relative mean error and FP. Since there is no structured way to choose the free parameters of SVMs, the variational range of free parameters and the effects of the parameters on prediction performance are discussed in this article. Analysis of experimental results proves that it is advantageous to apply SVMs forecasting system in perishable farm products demand forecasting.

Suggested Citation

  • Xiao Du & Stephen Leung & Jin Zhang & K.K. Lai, 2013. "Demand forecasting of perishable farm products using support vector machine," International Journal of Systems Science, Taylor & Francis Journals, vol. 44(3), pages 556-567.
  • Handle: RePEc:taf:tsysxx:v:44:y:2013:i:3:p:556-567
    DOI: 10.1080/00207721.2011.617888
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207721.2011.617888
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207721.2011.617888?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yihang Zhu & Yinglei Zhao & Jingjin Zhang & Na Geng & Danfeng Huang, 2019. "Spring onion seed demand forecasting using a hybrid Holt-Winters and support vector machine model," PLOS ONE, Public Library of Science, vol. 14(7), pages 1-18, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tsysxx:v:44:y:2013:i:3:p:556-567. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TSYS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.