IDEAS home Printed from https://ideas.repec.org/a/taf/tsysxx/v43y2012i7p1305-1321.html
   My bibliography  Save this article

A hybrid model-classifier framework for managing prediction uncertainty in expensive optimisation problems

Author

Listed:
  • Yoel Tenne
  • Kazuhiro Izui
  • Shinji Nishiwaki

Abstract

Many real-world optimisation problems rely on computationally expensive simulations to evaluate candidate solutions. Often, such problems will contain candidate solutions for which the simulation fails, for example, due to limitations of the simulation. Such candidate solutions can hinder the effectiveness of the optimisation since they may consume a large portion of the optimisation budget without providing new information to the optimiser, leading to search stagnation and a poor final result. Existing approaches to handle such designs either discard them altogether, or assign them a penalised fitness. However, this results in loss of beneficial information, or in a model with a severely deformed landscape. To address these issues, this study proposes a hybrid classifier-model framework. The role of the classifier is to predict which candidate solutions are likely to crash the simulation, and this prediction is then used to bias the search towards valid solutions. Furthermore, the proposed framework employs a trust-region approach, and several other procedures, to manage the model and classifier, and to ensure the progress of the optimisation. Performance analysis using an engineering application of airfoil shape optimisation shows the efficacy of the proposed framework, and the possibility to use the knowledge accumulated in the classifier to gain new insights into the problem being solved.

Suggested Citation

  • Yoel Tenne & Kazuhiro Izui & Shinji Nishiwaki, 2012. "A hybrid model-classifier framework for managing prediction uncertainty in expensive optimisation problems," International Journal of Systems Science, Taylor & Francis Journals, vol. 43(7), pages 1305-1321.
  • Handle: RePEc:taf:tsysxx:v:43:y:2012:i:7:p:1305-1321
    DOI: 10.1080/00207721.2011.602482
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207721.2011.602482
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207721.2011.602482?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nantiwat Pholdee & Sujin Bureerat, 2016. "Hybrid real-code ant colony optimisation for constrained mechanical design," International Journal of Systems Science, Taylor & Francis Journals, vol. 47(2), pages 474-491, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tsysxx:v:43:y:2012:i:7:p:1305-1321. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TSYS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.