IDEAS home Printed from https://ideas.repec.org/a/taf/tsysxx/v43y2012i4p597-609.html
   My bibliography  Save this article

Classification of Parkinson's disease using feature weighting method on the basis of fuzzy C-means clustering

Author

Listed:
  • Kemal Polat

Abstract

This study presents the application of fuzzy c-means (FCM) clustering-based feature weighting (FCMFW) for the detection of Parkinson's disease (PD). In the classification of PD dataset taken from University of California – Irvine machine learning database, practical values of the existing traditional and non-standard measures for distinguishing healthy people from people with PD by detecting dysphonia were applied to the input of FCMFW. The main aims of FCM clustering algorithm are both to transform from a linearly non-separable dataset to a linearly separable one and to increase the distinguishing performance between classes. The weighted PD dataset is presented to k-nearest neighbour (k-NN) classifier system. In the classification of PD, the various k-values in k-NN classifier were used and compared with each other. Also, the effects of k-values in k-NN classifier on the classification of Parkinson disease datasets have been investigated and the best k-value found. The experimental results have demonstrated that the combination of the proposed weighting method called FCMFW and k-NN classifier has obtained very promising results on the classification of PD.

Suggested Citation

  • Kemal Polat, 2012. "Classification of Parkinson's disease using feature weighting method on the basis of fuzzy C-means clustering," International Journal of Systems Science, Taylor & Francis Journals, vol. 43(4), pages 597-609.
  • Handle: RePEc:taf:tsysxx:v:43:y:2012:i:4:p:597-609
    DOI: 10.1080/00207721.2011.581395
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207721.2011.581395
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207721.2011.581395?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. José Carlos Castillo & Davide Carneiro & Juan Serrano-Cuerda & Paulo Novais & Antonio Fernández-Caballero & José Neves, 2014. "A multi-modal approach for activity classification and fall detection," International Journal of Systems Science, Taylor & Francis Journals, vol. 45(4), pages 810-824, April.
    2. Murat Gök, 2015. "An ensemble of -nearest neighbours algorithm for detection of Parkinson's disease," International Journal of Systems Science, Taylor & Francis Journals, vol. 46(6), pages 1108-1112, April.
    3. Mantas Lukauskas & Tomas Ruzgas, 2022. "A New Clustering Method Based on the Inversion Formula," Mathematics, MDPI, vol. 10(15), pages 1-16, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tsysxx:v:43:y:2012:i:4:p:597-609. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TSYS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.