Author
Listed:
- Xiao Fu
- Yi Zhang
- Juan de Dios Ortúzar
- Guonian Lü
Abstract
We provide a comprehensive review of the literature on inferring activity-travel patterns (ATP) using multi-source big data; the increasing number of publications over time on this subject, demonstrates the importance of big data in this task. Our aims are to identify the advantages and research gaps in ATP inference and to promote further developments in this field. We clarify the fundamental concepts (i.e. ATP and its components), commonly used data sources, and inference processes employed in ATP inference studies. Emphasis is placed on two prominent big data sources: mobile phone data and smart card data. We outline the various approaches involved in the inference process, and we highlight existing shortcomings in data sources, ATP inference methodologies, and result validation. Based on the review, it is evident that future research should address several limitations in ATP inference. Firstly, it is necessary to improve the comprehensive understanding of ATP and understand the interrelationships among its different components. Secondly, it is necessary to integrate different data sources and leverage their respective strengths to gain deeper insights into activity-travel behaviour. Lastly, further investigation into emerging technologies such as artificial intelligence in ATP inference is warranted to improve inference accuracy. The findings of this study could provide valuable insights for policy makers, enabling them to gain a deeper understanding of activity-travel choice behaviour and develop more effective policies related to transportation system.
Suggested Citation
Xiao Fu & Yi Zhang & Juan de Dios Ortúzar & Guonian Lü, 2025.
"Activity-travel pattern inference based on multi-source big data,"
Transport Reviews, Taylor & Francis Journals, vol. 45(1), pages 26-48, January.
Handle:
RePEc:taf:transr:v:45:y:2025:i:1:p:26-48
DOI: 10.1080/01441647.2024.2400341
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:transr:v:45:y:2025:i:1:p:26-48. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TTRV20 .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.