Author
Listed:
- Mahmoud M. Kamel
- Muhammed A. Hassan
- Hindawi Salem
- Omar A. Huzayyin
Abstract
With the massive ongoing efforts to mitigate climate change and reduce emission factors in the transportation sector, driving cycles (DCs) are becoming an essential tool for the testing and certification of distinct types of vehicles. Nevertheless, the open literature lacks careful comparative studies on the impact of different approaches in the development of Markov chain (MC)-based DCs, as well as DCs, developed specifically for the developing and highly congested urban areas in the Middle East and North Africa. Using a large dataset of 43 light-duty vehicles, driven over different areas in Greater Cairo, Egypt, this study aims to develop, compare, and benchmark 24 candidate MC-based DCs, against two clustering-based DCs, as well as four cycles used widely in the US and Europe. These 24 DCs differ in terms of the clustering algorithm (K-medoids and K-means), clustering parameters (different combinations of vehicle’s speed, acceleration, specific power, and percentage idling time), and definitions of microtrips (start-stop and fixed distance). The results show that the MC method outperforms random chaining of microtrips, with average relative root mean square errors (RRMSEs) of 15.8% and 23.6%, respectively. Clustering 350 m fixed distance-based microtrips using the vehicle’s speed, acceleration, and percentage idling time shows the least RRMSE of 8.207%. Defining microtrips based on fixed distance is also better than starts/stops for most vehicle types. The reference cycles (WLTP, NEDC, UDDS, and FTP-17) showed poor representativeness of the real-world data, with an average RRMSE of 76.8%. The same inferior performance of reference cycles, compared to the newly proposed ones, was also highlighted in the estimation of fuel consumption and emission factors. Hence, the proposed cycles and the reported comparative studies can be valuable tools for the assessment of emissions and fuel consumption in such developing metropolitan areas.Highlights 24 Markov chain driving cycles are developed and benchmarked for Cairo, Egypt.Markov chain method outperforms the random chaining of microtrips.The best-performing cycle has a relative root mean square error of 8.2%.The best cycle clusters microtrips based on speed, acceleration, and idling time.The proposed cycle is superior to WLTP, NEDC, UDDS, and FTP-17 for Cairo.
Suggested Citation
Mahmoud M. Kamel & Muhammed A. Hassan & Hindawi Salem & Omar A. Huzayyin, 2024.
"Comparative studies of Markov chain-based driving cycles for light-duty vehicles,"
Transportation Planning and Technology, Taylor & Francis Journals, vol. 47(5), pages 749-787, July.
Handle:
RePEc:taf:transp:v:47:y:2024:i:5:p:749-787
DOI: 10.1080/03081060.2023.2294343
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:transp:v:47:y:2024:i:5:p:749-787. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/GTPT20 .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.