IDEAS home Printed from https://ideas.repec.org/a/taf/transp/v41y2018i1p58-79.html
   My bibliography  Save this article

Inverse discrete choice modelling: theoretical and practical considerations for imputing respondent attributes from the patterns of observed choices

Author

Listed:
  • Yuanying Zhao
  • Jacek Pawlak
  • John W. Polak

Abstract

The growing availability of geotagged big data has stimulated substantial discussion regarding their usability in detailed travel behaviour analysis. Whilst providing a large amount of spatio-temporal information about travel behaviour, these data typically lack semantic content characterising travellers and choice alternatives. The inverse discrete choice modelling (IDCM) approach presented in this paper proposes that discrete choice models (DCMs) can be statistically inverted and used to attach additional variables from observations of travel choices. Suitability of the approach for inferring socioeconomic attributes of travellers is explored using mode choice decisions observed in London Travel Demand Survey. Performance of the IDCM is investigated with respect to the type of variable, the explanatory power of the imputed variable, and the type of estimator used. This method is a significant contribution towards establishing the extent to which DCMs can be credibly applied for semantic enrichment of passively collected big data sets while preserving privacy.

Suggested Citation

  • Yuanying Zhao & Jacek Pawlak & John W. Polak, 2018. "Inverse discrete choice modelling: theoretical and practical considerations for imputing respondent attributes from the patterns of observed choices," Transportation Planning and Technology, Taylor & Francis Journals, vol. 41(1), pages 58-79, January.
  • Handle: RePEc:taf:transp:v:41:y:2018:i:1:p:58-79
    DOI: 10.1080/03081060.2018.1402745
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/03081060.2018.1402745
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/03081060.2018.1402745?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhao, Yuanying & Pawlak, Jacek & Sivakumar, Aruna, 2022. "Theory for socio-demographic enrichment performance using the inverse discrete choice modelling approach," Transportation Research Part B: Methodological, Elsevier, vol. 155(C), pages 101-134.
    2. Mejía, Gonzalo & Aránguiz, Raúl & Espejo-Díaz, Julián Alberto & Granados-Rivera, Daniela & Mejía-Argueta, Christopher, 2023. "Can street markets be a sustainable strategy to mitigate food insecurity in emerging countries? Insights from a competitive facility location model," Socio-Economic Planning Sciences, Elsevier, vol. 86(C).
    3. Ren, Xiyuan & Chow, Joseph Y.J., 2022. "A random-utility-consistent machine learning method to estimate agents’ joint activity scheduling choice from a ubiquitous data set," Transportation Research Part B: Methodological, Elsevier, vol. 166(C), pages 396-418.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:transp:v:41:y:2018:i:1:p:58-79. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/GTPT20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.