IDEAS home Printed from https://ideas.repec.org/a/taf/transp/v39y2016i4p358-369.html
   My bibliography  Save this article

An exploration of the relationships between socioeconomics, land use and daily trip chain pattern among low-income residents

Author

Listed:
  • Long Cheng
  • Xuewu Chen
  • Shuo Yang

Abstract

Daily trip chain complexity and type choices of low-income residents are examined based on activity travel diary survey data in Nanjing, China. Statistical tests reveal that non-work trip chain complexity is distinctly distinct between low-income residents and non-low-income residents. Low-income residents are inclined to make simple non-work chains. Two types of econometric models, a stereotype logit model and mixed logit model, are then developed to investigate the possible explanatory variables affecting their trip pattern. The number of stops within a chain and chain types are considered as dependent variables, while independent variables include household and personal characteristics as well as land use variables. Results show that once convenient and flexible conditions are supplied, low-income residents are more likely to make multiple activities in a trip chain. Areas with high population and employment densities are associated with complex work trip chains and more non-work activity involvement.

Suggested Citation

  • Long Cheng & Xuewu Chen & Shuo Yang, 2016. "An exploration of the relationships between socioeconomics, land use and daily trip chain pattern among low-income residents," Transportation Planning and Technology, Taylor & Francis Journals, vol. 39(4), pages 358-369, June.
  • Handle: RePEc:taf:transp:v:39:y:2016:i:4:p:358-369
    DOI: 10.1080/03081060.2016.1160579
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/03081060.2016.1160579
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/03081060.2016.1160579?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kim, Suji & Lee, Sujin & Ko, Eunjeong & Jang, Kitae & Yeo, Jiho, 2021. "Changes in car and bus usage amid the COVID-19 pandemic: Relationship with land use and land price," Journal of Transport Geography, Elsevier, vol. 96(C).
    2. Yadi Zhu & Feng Chen & Ming Li & Zijia Wang, 2018. "Inferring the Economic Attributes of Urban Rail Transit Passengers Based on Individual Mobility Using Multisource Data," Sustainability, MDPI, vol. 10(11), pages 1-17, November.
    3. Wan, Li & Tang, Junqing & Wang, Lihua & Schooling, Jennifer, 2021. "Understanding non-commuting travel demand of car commuters – Insights from ANPR trip chain data in Cambridge," Transport Policy, Elsevier, vol. 106(C), pages 76-87.
    4. Yang, Shuo & Fan, Yingling & Deng, Wei & Cheng, Long, 2019. "Do built environment effects on travel behavior differ between household members? A case study of Nanjing, China," Transport Policy, Elsevier, vol. 81(C), pages 360-370.
    5. Gang Cheng & Shuzhi Zhao & Jin Li, 2019. "The Effects of Latent Attitudinal Variables and Sociodemographic Differences on Travel Behavior in Two Small, Underdeveloped Cities in China," Sustainability, MDPI, vol. 11(5), pages 1-17, March.
    6. Huang, Yuqiao & Gao, Linjie & Ni, Anning & Liu, Xiaoning, 2021. "Analysis of travel mode choice and trip chain pattern relationships based on multi-day GPS data: A case study in Shanghai, China," Journal of Transport Geography, Elsevier, vol. 93(C).
    7. Cong Qi & Zhenjun Zhu & Xiucheng Guo & Ruiying Lu & Junlan Chen, 2020. "Examining Interrelationships between Tourist Travel Mode and Trip Chain Choices Using the Nested Logit Model," Sustainability, MDPI, vol. 12(18), pages 1-15, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:transp:v:39:y:2016:i:4:p:358-369. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/GTPT20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.