IDEAS home Printed from https://ideas.repec.org/a/taf/transp/v38y2015i6p585-600.html
   My bibliography  Save this article

Understanding parking decisions with a Bayesian network

Author

Listed:
  • Fang Zong
  • Menglin Wang

Abstract

In this paper, a Bayesian network is developed to investigate three intertwining parking decisions, namely parking period, parking location, and parking duration, and the impacts of a number of parking-related factors on these decisions. With parking information from Beijing, China in 2005, the structure and parameter of a Bayesian network were learnt by employing the K2 algorithm and Bayesian parameter estimation method respectively. The results show that the decision on how long to park follows that on where to park, and both of them are affected by the decision of when to park. This suggests that parking policies aimed at intervening in one specific parking decision may have an indirect influence on other parking decisions, which embraces an integrated view in the development of parking policies. The findings facilitate the development of measures for regulating parking behavior by identifying important contributing factors.

Suggested Citation

  • Fang Zong & Menglin Wang, 2015. "Understanding parking decisions with a Bayesian network," Transportation Planning and Technology, Taylor & Francis Journals, vol. 38(6), pages 585-600, August.
  • Handle: RePEc:taf:transp:v:38:y:2015:i:6:p:585-600
    DOI: 10.1080/03081060.2015.1048943
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/03081060.2015.1048943
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/03081060.2015.1048943?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Parmar, Janak & Das, Pritikana & Dave, Sanjaykumar M., 2021. "A machine learning approach for modelling parking duration in urban land-use," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 572(C).
    2. Zong, Fang & Yu, Ping & Tang, Jinjun & Sun, Xiao, 2019. "Understanding parking decisions with structural equation modeling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 408-417.
    3. Fang Zong & Yanan He & Yixin Yuan, 2015. "Dependence of Parking Pricing on Land Use and Time of Day," Sustainability, MDPI, vol. 7(7), pages 1-21, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:transp:v:38:y:2015:i:6:p:585-600. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/GTPT20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.