IDEAS home Printed from https://ideas.repec.org/a/taf/transp/v36y2013i4p352-376.html
   My bibliography  Save this article

Multi-objective bilevel construction material transportation scheduling in large-scale construction projects under a fuzzy random environment

Author

Listed:
  • Jiuping Xu
  • Jun Gang

Abstract

This paper investigates a transportation scheduling problem in large-scale construction projects under a fuzzy random environment. The problem is formulated as a fuzzy, random multi-objective bilevel optimization model where the construction company decides the transportation quantities from every source to every destination according to the criterion of minimizing total transportation cost and transportation time on the upper level, while the transportation agencies choose their transportation routes such that the total travel cost is minimized on the lower level. Specifically, we model both travel time and travel cost as triangular fuzzy random variables. Then the multi-objective bilevel adaptive particle swarm optimization algorithm is proposed to solve the model. Finally, a case study of transportation scheduling for the Shuibuya Hydropower Project in China is used as a real world example to demonstrate the practicality and efficiency of the optimization model and algorithm.

Suggested Citation

  • Jiuping Xu & Jun Gang, 2013. "Multi-objective bilevel construction material transportation scheduling in large-scale construction projects under a fuzzy random environment," Transportation Planning and Technology, Taylor & Francis Journals, vol. 36(4), pages 352-376, June.
  • Handle: RePEc:taf:transp:v:36:y:2013:i:4:p:352-376
    DOI: 10.1080/03081060.2013.798486
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/03081060.2013.798486
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/03081060.2013.798486?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hao Wang & Quan Liu & Hongyang Zhang & Yinlong Jin & Wenzhen Yu, 2022. "A Two-Stage Decision-Making Method Based on WebGIS for Bulk Material Transportation of Hydropower Construction," Energies, MDPI, vol. 15(5), pages 1-21, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:transp:v:36:y:2013:i:4:p:352-376. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/GTPT20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.