IDEAS home Printed from https://ideas.repec.org/a/taf/transp/v36y2013i3p244-266.html
   My bibliography  Save this article

Deciding whether and how to improve statewide travel demand models based on transportation planning application needs

Author

Listed:
  • Chenfeng Xiong
  • Lei Zhang

Abstract

Many states in the USA have developed statewide travel demand models for transportation planning at the state level and along intercity corridors. Travel demand models at mega-region and provincial levels are also widely used in Europe and Asia. With modern transportation planning applications requiring enhanced model capabilities, many states are considering improving their four-step statewide demand models. This paper synthesizes representative statewide models developed with traditional four-step, advanced four-step, and integrated micro-simulation methods. The focus of this synthesis study is as much on model applications and data requirements as on modeling methods. An incremental model improvement approach toward advanced statewide models is recommended. Review findings also suggest model improvement activities should be justified by planning application needs. For statewide model improvement plans to be successful and financially sustainable, the return on model improvement investment needs to be demonstrated by timely applications that rely on improved model capabilities.

Suggested Citation

  • Chenfeng Xiong & Lei Zhang, 2013. "Deciding whether and how to improve statewide travel demand models based on transportation planning application needs," Transportation Planning and Technology, Taylor & Francis Journals, vol. 36(3), pages 244-266, April.
  • Handle: RePEc:taf:transp:v:36:y:2013:i:3:p:244-266
    DOI: 10.1080/03081060.2013.779473
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/03081060.2013.779473
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/03081060.2013.779473?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liang Tang & Chenfeng Xiong & Lei Zhang, 2015. "Decision tree method for modeling travel mode switching in a dynamic behavioral process," Transportation Planning and Technology, Taylor & Francis Journals, vol. 38(8), pages 833-850, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:transp:v:36:y:2013:i:3:p:244-266. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/GTPT20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.