IDEAS home Printed from https://ideas.repec.org/a/taf/transp/v36y2013i1p62-75.html
   My bibliography  Save this article

A computationally efficient two-stage method for short-term traffic prediction on urban roads

Author

Listed:
  • Fangce Guo
  • Rajesh Krishnan
  • John Polak

Abstract

Short-term traffic prediction plays an important role in intelligent transport systems. This paper presents a novel two-stage prediction structure using the technique of Singular Spectrum Analysis (SSA) as a data smoothing stage to improve the prediction accuracy. Moreover, a novel prediction method named Grey System Model (GM) is introduced to reduce the dependency on method training and parameter optimisation. To demonstrate the effects of these improvements, this paper compares the prediction accuracies of SSA and non-SSA model structures using both a GM and a more conventional Seasonal Auto-Regressive Integrated Moving Average (SARIMA) prediction model. These methods were calibrated and evaluated using traffic flow data from a corridor in Central London under both normal and incident traffic conditions. The prediction accuracy comparisons show that the SSA method as a data smoothing step before the application of machine learning or statistical prediction methods can improve the final traffic prediction accuracy. In addition, the results indicate that the relatively novel GM method outperforms SARIMA under both normal and incident traffic conditions on urban roads.

Suggested Citation

  • Fangce Guo & Rajesh Krishnan & John Polak, 2013. "A computationally efficient two-stage method for short-term traffic prediction on urban roads," Transportation Planning and Technology, Taylor & Francis Journals, vol. 36(1), pages 62-75, February.
  • Handle: RePEc:taf:transp:v:36:y:2013:i:1:p:62-75
    DOI: 10.1080/03081060.2012.745721
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/03081060.2012.745721
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/03081060.2012.745721?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qiang Shang & Ciyun Lin & Zhaosheng Yang & Qichun Bing & Xiyang Zhou, 2016. "A Hybrid Short-Term Traffic Flow Prediction Model Based on Singular Spectrum Analysis and Kernel Extreme Learning Machine," PLOS ONE, Public Library of Science, vol. 11(8), pages 1-25, August.
    2. Kaffash, Sepideh & Nguyen, An Truong & Zhu, Joe, 2021. "Big data algorithms and applications in intelligent transportation system: A review and bibliometric analysis," International Journal of Production Economics, Elsevier, vol. 231(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:transp:v:36:y:2013:i:1:p:62-75. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/GTPT20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.