IDEAS home Printed from https://ideas.repec.org/a/taf/transp/v34y2011i6p605-624.html
   My bibliography  Save this article

Shipment forecasting for supply chain collaborative transportation management using grey models with grey numbers

Author

Listed:
  • Yuh-Horng Wen

Abstract

The sharing of forecasts is vital to supply chain collaborative transportation management (CTM). Shipment forecasting is fundamental to CTM, and is essential to carrier tactical and operational planning processes such as network planning, routing, scheduling, and fleet planning and assignment. By applying and extending grey forecasting theory, this paper develops a series of shipment forecasting models for supply chain CTM. Grey time-series forecasting and grey systematic forecasting models are developed for shipment forecasting under different collaborative frameworks. This paper also integrates grey numbers with grey models for analyzing shipment forecasting under partial information sharing in CTM frameworks. An example of an integrated circuit (IC) supply chain and relevant data are provided. The proposed models yield more accurate prediction results than regression, autoregressive integrated moving average (ARIMA), and neural network models. Finally, numerical results indicate that as the degree of information sharing increases under CTM, carrier prediction accuracy increases. This paper demonstrates how the proposed forecasting models can be applied to the CTM system and provides the theoretical basis for the forecasting module developed for supply chain CTM.

Suggested Citation

  • Yuh-Horng Wen, 2011. "Shipment forecasting for supply chain collaborative transportation management using grey models with grey numbers," Transportation Planning and Technology, Taylor & Francis Journals, vol. 34(6), pages 605-624, June.
  • Handle: RePEc:taf:transp:v:34:y:2011:i:6:p:605-624
    DOI: 10.1080/03081060.2011.600089
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/03081060.2011.600089
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/03081060.2011.600089?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chia-Nan Wang & Hong-Xuyen Thi Ho & Shih-Hsiung Luo & Tsung-Fu Lin, 2017. "An Integrated Approach to Evaluating and Selecting Green Logistics Providers for Sustainable Development," Sustainability, MDPI, vol. 9(2), pages 1-21, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:transp:v:34:y:2011:i:6:p:605-624. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/GTPT20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.