Author
Listed:
- Celso Gustavo Stall Sikora
- Lorenzo Tiacci
Abstract
Efficient configurations of assembly lines involve balancing the workload across stations and strongly depend on the sequence in which the products are processed. While these processes are interconnected, they are typically addressed separately due to the complexities and different time frames involved. Even if some literature methods combine balancing and sequencing problems, these are limited in scalability, often constrained to small-scale instances with a limited number of products. This restricts their applicability to real-world industrial scenarios, where the number of product configurations can be vast. Another branch of the literature assumes a random sequence, which is a pessimistic view of a real setting. To fill this gap, we propose a genetic algorithm for the integration of the balancing problem with a semi-random production sequence that respects selected car-sequencing rules. This paper addresses the combined balancing and car sequencing rules selection problem for large-scale assembly lines with uncertain production sequences. By incorporating rules related to car sequencing, we reduce the randomness of a simulated production sequence used to evaluate the efficiency of an assembly balancing solution without the burden of solving an optimisation problem. The impact of incorporating rules is evaluated through a discrete-event simulator, demonstrating significant improvements in line performance.
Suggested Citation
Celso Gustavo Stall Sikora & Lorenzo Tiacci, 2025.
"Incorporating car-sequencing rules in the planning of mixed-model assembly lines,"
International Journal of Production Research, Taylor & Francis Journals, vol. 63(6), pages 2114-2132, March.
Handle:
RePEc:taf:tprsxx:v:63:y:2025:i:6:p:2114-2132
DOI: 10.1080/00207543.2024.2396021
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tprsxx:v:63:y:2025:i:6:p:2114-2132. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TPRS20 .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.