Author
Listed:
- Geonseok Lee
- Tianhui Wang
- Dohyun Kim
- Myong-Kee Jeong
Abstract
Principal component analysis (PCA) is a widely used statistical technique for dimensionality reduction, extracting a low-dimensional subspace in which the variance is maximised (or the reconstruction error is minimised). To improve the interpretability of learned representations, several variants of PCA have recently been developed to estimate the principal components with a small number of input features (variable), such as sparse PCA and group sparse PCA. However, most existing methods suffer from either the requirement of measuring all the input variables or redundancy in the set of selected features. Another challenge for these methods is that they need to specify the sparsity level of the coefficient matrix in advance. To address the above issues, in this paper, we propose an elastic-net regularisation for sparse group PCA (ESGPCA), which incorporates sparsity constraints into the objective function to consider both within-group and between-group sparsities. Such a sparse learning approach allows us to automatically discover the sparse principal loading vectors without any prior assumption of the input features. We solve the non-smooth regularised problem using the alternating direction method of multipliers (ADMM), an efficient distributed optimisation technique. Empirical evaluations on both synthetic and real datasets demonstrate the effectiveness and promising performance of our sparse group PCA than other compared methods.
Suggested Citation
Geonseok Lee & Tianhui Wang & Dohyun Kim & Myong-Kee Jeong, 2025.
"Sparse group principal component analysis using elastic-net regularisation and its application to virtual metrology in semiconductor manufacturing,"
International Journal of Production Research, Taylor & Francis Journals, vol. 63(3), pages 865-881, February.
Handle:
RePEc:taf:tprsxx:v:63:y:2025:i:3:p:865-881
DOI: 10.1080/00207543.2024.2361854
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tprsxx:v:63:y:2025:i:3:p:865-881. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TPRS20 .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.