Author
Listed:
- Sreejith Balasubramanian
- Vinaya Shukla
- Nazrul Islam
- Arvind Upadhyay
- Linh Duong
Abstract
The COVID-19 pandemic exposed vulnerabilities in global healthcare systems and highlighted the need for innovative, technology-driven solutions like Artificial Intelligence (AI). However, previous research on the topic has been limited and fragmented, leading to an incomplete understanding of the ‘what’, ‘where’ and ‘how’ of its application, as well as its associated benefits and challenges. This study proposes a comprehensive AI framework for healthcare and assesses its effectiveness within the UAE's healthcare sector. It provides valuable insights into AI applications for healthcare stakeholders that range from the molecular to the population level. The study covers the different computational techniques employed, from machine learning to computer vision, and the various types of data inputs fed into these techniques, including clinical, epidemiological, locational, behavioural and genomic data. Additionally, the research highlights AI's capacity to enhance healthcare's operational, quality-related and social outcomes, and recognises regulatory policies, technological infrastructure, stakeholder cooperation and innovation readiness as key facilitators of AI adoption. Lastly, we stress the importance of addressing challenges such as data privacy, security, generalisability and algorithmic bias. Our findings are relevant beyond the pandemic in facilitating the development of AI-related policy interventions and support mechanisms for building resilient healthcare sector that can withstand future challenges.
Suggested Citation
Sreejith Balasubramanian & Vinaya Shukla & Nazrul Islam & Arvind Upadhyay & Linh Duong, 2025.
"Applying artificial intelligence in healthcare: lessons from the COVID-19 pandemic,"
International Journal of Production Research, Taylor & Francis Journals, vol. 63(2), pages 594-627, January.
Handle:
RePEc:taf:tprsxx:v:63:y:2025:i:2:p:594-627
DOI: 10.1080/00207543.2023.2263102
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tprsxx:v:63:y:2025:i:2:p:594-627. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TPRS20 .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.