Author
Listed:
- Mohammad Rahiminia
- Sareh Shahrabifarahani
- Mohammad Alipour-Vaezi
- Amir Aghsami
- Fariborz Jolai
Abstract
It is necessary to control patient congestion in medical centers during pandemics where medical demand grows rapidly. Also, managing generated medical waste is critical since pandemic waste can be a source of disease spread. Although some researchers have studied healthcare optimization in medical systems, there is still a lack of models simultaneously managing congestion in medical centers integrated with waste management using a new application of queueing systems. The model is also the first to use a data-driven method to develop a mathematical model of healthcare and waste management. To fill these gaps, this paper develops a multi-shift mathematical model to manage the congestion in the medical center and medical waste during the pandemic. To this aim, patients are categorized using machine learning algorithms at first. Then, the number of outpatients and inpatients, as well as medical waste, is modeled as a Markovian healthcare waste queueing-inventory system (HWQIS) using a bulk service queueing model. A case study based on the Covid-19 pandemic is applied after the model has been validated using twelve test problems. By determining the optimal size of waste packages, vehicle capacity, and the number of servers, we minimized the patients waiting time and reduced waste accumulation.A hospital with outpatient and inpatient departments and waste system, along with their queueing models’ symbols.
Suggested Citation
Mohammad Rahiminia & Sareh Shahrabifarahani & Mohammad Alipour-Vaezi & Amir Aghsami & Fariborz Jolai, 2025.
"A novel data-driven patient and medical waste queueing-inventory system under pandemic: a real-life case study,"
International Journal of Production Research, Taylor & Francis Journals, vol. 63(2), pages 418-434, January.
Handle:
RePEc:taf:tprsxx:v:63:y:2025:i:2:p:418-434
DOI: 10.1080/00207543.2023.2217939
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tprsxx:v:63:y:2025:i:2:p:418-434. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TPRS20 .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.