IDEAS home Printed from https://ideas.repec.org/a/taf/tprsxx/v63y2025i1p286-313.html
   My bibliography  Save this article

Supply chain fraud prediction with machine learning and artificial intelligence

Author

Listed:
  • Mark E. Lokanan
  • Vikas Maddhesia

Abstract

As businesses undergo digital transformation, supply chain fraud poses an increasing threat, necessitating more sophisticated detection and prevention methods. This paper explores the application of machine learning (ML) and artificial intelligence (AI) in detecting and preventing supply chain fraud. The research design involves analyzing a dataset of supply chain operations and employing various ML algorithms to detect consumer-based fraud within the supply chain, which occurs when consumers partake in deceptive practices during the order process of e-commerce transactions. We analyzed 180,000 transactions from an international company recorded between 2015 and 2018. This study emphasises the necessity of human oversight in interpreting the results generated by these technologies. The implications of supply chain fraud on financial stability, legal standing, and reputation are discussed, along with the potential for ML technology to identify irregularities indicative of fraud. Descriptive findings highlight the prevalence of fraudulent transactions in specific payment types. The AI sequential and the CatBoost classifiers were the top-performing algorithms across all performance metrics. The top features to detect unusual orders are delivery status, payment type, and late delivery risks. The discussion emphasises the promising predictive capabilities of the ML and AI models and their implications for detecting supply chain fraud.

Suggested Citation

  • Mark E. Lokanan & Vikas Maddhesia, 2025. "Supply chain fraud prediction with machine learning and artificial intelligence," International Journal of Production Research, Taylor & Francis Journals, vol. 63(1), pages 286-313, January.
  • Handle: RePEc:taf:tprsxx:v:63:y:2025:i:1:p:286-313
    DOI: 10.1080/00207543.2024.2361434
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207543.2024.2361434
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207543.2024.2361434?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tprsxx:v:63:y:2025:i:1:p:286-313. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TPRS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.