Author
Listed:
- Xiao Chang
- Xiaoliang Jia
- Jiahao Ren
Abstract
Flexible job shop scheduling problem (FJSP) with worker flexibility has gained significant attention in the upcoming Industry 5.0 era because of its computational complexity and its importance in production processes. It is normally assumed that each machine is typically operated by one worker at any time; therefore, shop-floor managers need to decide on the most efficient assignments for machines and workers. However, the processing time is variable and uncertain due to the fluctuating production environment caused by unsteady operating conditions of machines and learning effect of workers. Meanwhile, they also need to balance the worker workload while meeting production efficiency. Thus a dual resource-constrained FJSP with worker’s learning effect and fuzzy processing time (F-DRCFJSP-WL) is investigated to simultaneously minimise makespan, total machine workloads and maximum worker workload. Subsequently, the reinforcement learning enhanced multi-objective memetic algorithm based on decomposition (RL-MOMA/D) is proposed for solving F-DRCFJSP-WL. For RL-MOMA/D, the Q-learning is incorporated into memetic algorithm to perform variable neighbourhood search and further strengthen the exploitation capability for the algorithm. Finally, comprehensive experiments on extensive test instances and a case study of aircraft overhaul shop-floor are conducted to demonstrate effectiveness and superiority of the proposed method.
Suggested Citation
Xiao Chang & Xiaoliang Jia & Jiahao Ren, 2025.
"A reinforcement learning enhanced memetic algorithm for multi-objective flexible job shop scheduling toward Industry 5.0,"
International Journal of Production Research, Taylor & Francis Journals, vol. 63(1), pages 119-147, January.
Handle:
RePEc:taf:tprsxx:v:63:y:2025:i:1:p:119-147
DOI: 10.1080/00207543.2024.2357740
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tprsxx:v:63:y:2025:i:1:p:119-147. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TPRS20 .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.