Author
Listed:
- Tianhui Wang
- Jaeseung Baek
- Myong-Kee Jeong
- Seongho Seo
- Jaekyung Choi
Abstract
In the context of Industry 4.0, many production scenarios utilise sensors to monitor manufacturing processes, resulting in massive data that can be leveraged to build machine-learning models to improve production efficiency and quality. In semiconductor manufacturing, where many sensors are employed to monitor the production process, the resulting multi-sensor data poses challenges for constructing a virtual metrology (VM) model to assess wafer quality. Furthermore, building separate prediction models for each sensor can result in a loss of redundancy present in the multi-sensor data. Therefore, this paper proposes a multi-source AdaBoost with a cross-weight sampling method for predicting the critical dimension required in VM. Compared with the existing AdaBoost algorithm in regression, the proposed method adapts well to multi-source data by incorporating a cross-weight sampling distribution. Thus, when updating the sampling weight distribution, the impact of both individual and multi-source data is considered to re-sample high-quality observations. Based on the numerical results from the synthetic datasets and case study in semiconductor manufacturing, the proposed method outperforms benchmark methods. Additionally, owing to the redundancy of multi-sensor data, the proposed method demonstrates robust performance regardless of the noise level in the semiconductor VM data.
Suggested Citation
Tianhui Wang & Jaeseung Baek & Myong-Kee Jeong & Seongho Seo & Jaekyung Choi, 2024.
"Multi-source AdaBoost with cross-weight method for virtual metrology in semiconductor manufacturing,"
International Journal of Production Research, Taylor & Francis Journals, vol. 62(19), pages 7114-7129, October.
Handle:
RePEc:taf:tprsxx:v:62:y:2024:i:19:p:7114-7129
DOI: 10.1080/00207543.2024.2318490
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tprsxx:v:62:y:2024:i:19:p:7114-7129. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TPRS20 .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.