Author
Listed:
- Prasanta Kumar Dey
- Soumyadeb Chowdhury
- Amelie Abadie
- Emilia Vann Yaroson
- Sobhan Sarkar
Abstract
Despite the exponential growth of artificial intelligence (AI) research in operations, supply chain, and productions management literature, empirical insights on how organisational behavioural mechanisms at the human–technology interface will facilitate AI adoption in small- and medium-sized enterprises (SMEs), and subsequent impact of the adoption on sustainable practices and supply chain resilience (SCR) is under-researched. To bridge these gaps, we integrate resource orchestration and knowledge-based view theoretical perspectives to develop a novel structural model examining antecedents to SCR and AI adoption, considering AI adoption as a pivot for facilitating SCR. The structural equation modelling technique was employed on the data collected from 280 Vietnamese manufacturing SMEs’ operations managers. Our results demonstrate that leadership will drive AI adoption by creating a data-driven, digital and conducive culture, and strengthening employee skills and competencies. Furthermore, AI adoption positively influences CE practices, SC agility and risk management, which will help to achieve SCR. For managers, the importance of internal organisational employee-centric mechanisms to create value from AI adoption without impeding business value is highlighted. We reveal the enablers that will help in transforming SMEs to become resilient by deriving appropriate responses to unprecedented disruptions through data-driven decision-making leveraging AI adoption.
Suggested Citation
Prasanta Kumar Dey & Soumyadeb Chowdhury & Amelie Abadie & Emilia Vann Yaroson & Sobhan Sarkar, 2024.
"Artificial intelligence-driven supply chain resilience in Vietnamese manufacturing small- and medium-sized enterprises,"
International Journal of Production Research, Taylor & Francis Journals, vol. 62(15), pages 5417-5456, August.
Handle:
RePEc:taf:tprsxx:v:62:y:2024:i:15:p:5417-5456
DOI: 10.1080/00207543.2023.2179859
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tprsxx:v:62:y:2024:i:15:p:5417-5456. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TPRS20 .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.