Author
Listed:
- Jianbo Yu
- Yanshu Wang
- Qingfeng Li
- Hao Li
- Mingyan Ma
- Peilun Liu
Abstract
Defect detection is crucial in ensuring the quality of steel products. This paper proposes a novel deep neural network, cascaded adaptive global location network (CAGLNet), for detecting steel surface defects. The main objective of this study is to address the challenges associated with the irregular shape and dense spatial distribution of defects on steel. To achieve this goal, CAGLNet integrates a feature extraction network that combines residual and feature pyramid networks, a cascade adaptive tree-structure region proposal network (CAT-RPN) that eliminates the need for prior knowledge, and a global localisation regression for steel defect detection. This paper evaluates the effectiveness of CAGLNet on the NEU-DET dataset and demonstrates that the proposed model achieves an average accuracy of 85.40% with a fast frames per second of 10.06, outperforming those state-of-the-art methods. These results suggest that CAGLNet has the potential to significantly improve the effectiveness of defect detection in industrial production processes, leading to increased production yield and cost savings.Abbreviations: AT-RPN, adaptive tree-structure region proposal network; CAGLNet, cascaded adaptive global location network; CAT-RPN, cascade adaptive tree-structure region proposal network; CNN, convolutional neural network; DNN, deep neural network; EPNet, edge proposal network; FPN, feature pyramid network; FCOS, fully convolutional one-stage detector; FPS, frames per second; GMM, Gaussian mixture model; IoU, intersection-over-union; ROIAlign, region of interest align; RPN, region proposal network; ResNet, residual network; ResNet50_FPN, residual network and feature pyramid network; SABL, side aware boundary localisation; SSD, single-shot multiBox detector; TPE, Tree-structured Parzen estimator
Suggested Citation
Jianbo Yu & Yanshu Wang & Qingfeng Li & Hao Li & Mingyan Ma & Peilun Liu, 2024.
"Cascaded adaptive global localisation network for steel defect detection,"
International Journal of Production Research, Taylor & Francis Journals, vol. 62(13), pages 4884-4901, July.
Handle:
RePEc:taf:tprsxx:v:62:y:2024:i:13:p:4884-4901
DOI: 10.1080/00207543.2023.2281664
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tprsxx:v:62:y:2024:i:13:p:4884-4901. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TPRS20 .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.