Author
Listed:
- Fatima Ezzahra Achamrah
- Mariam Lafkihi
- Eric Ballot
Abstract
The Physical Internet (PI) offers an innovative approach to logistics networks, focussing on operational, digital, and physical interconnectivity through encapsulation, interfaces, and protocols. However, PI network can be complex to manage due to its dynamic structure and the need for routing protocols that adapt to continually evolving circumstances. This paper proposes a dynamic and reactive routing protocol for a PI sub-network, leveraging well-known Internet techniques, namely ‘Route Request’ and ‘Route Reply’. The objective is to enable dynamic, self-starting, multi-hop routing among nodes, ensuring continuous connectivity even amidst network disruptions. Moreover, the protocol incorporates reactive assignment algorithms to address disruptions, such as product shortages and resource unavailability. Additionally, the protocol is innovative in considering each container and resource's preferences and local knowledge of the system's known state. To include preferences in decision-making, we incorporate the Technique for Order Preference by Similarity to Ideal Solution and goal programming. Finally, we use multi-agent simulation and real order data from two major French retail chains to evaluate the protocol's performance. Results showed improved routing robustness and efficiency amidst disruptions compared to state-of-the-art methods. Various scenarios have been examined to yield promising insights for future research and practical applications in the realm of the PI.
Suggested Citation
Fatima Ezzahra Achamrah & Mariam Lafkihi & Eric Ballot, 2024.
"A dynamic and reactive routing protocol for the physical internet network,"
International Journal of Production Research, Taylor & Francis Journals, vol. 62(13), pages 4735-4753, July.
Handle:
RePEc:taf:tprsxx:v:62:y:2024:i:13:p:4735-4753
DOI: 10.1080/00207543.2023.2274340
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tprsxx:v:62:y:2024:i:13:p:4735-4753. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TPRS20 .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.