Author
Listed:
- Kendrik Yan Hong Lim
- Theresia Stefanny Yosal
- Chun-Hsien Chen
- Pai Zheng
- Lihui Wang
- Xun Xu
Abstract
The increasing complexity of industrial systems demands more effective and intelligent maintenance approaches to address manufacturing defects arising from faults in multiple asset modules. Traditional digital twin (DT) systems, however, face limitations in interoperability, knowledge sharing, and causal inference. As such, cognitive digital twins (CDTs) can add value by managing a collaborative web of interconnected systems, facilitating advanced cross-domain analysis and dynamic context considerations. This paper introduces a CDT system that leverages industrial knowledge graphs (iKGs) to support maintenance planning and operations. By employing a design structure matrix (DSM) to model dependencies and relationships, a semantic translation approach maps the knowledge into a graph-based representation for reasoning and analysis. An automatic solution generation mechanism, utilising graph sequencing with Louvain and PageRank algorithms, derives feasible solutions, which can be validated via simulation to minimise production disruption impacts. The CDT system can also identify potential disruptions in new product designs, thus enabling preventive actions to be taken. A case study featuring a print production manufacturing line illustrates the CDT system's capabilities in causal inference and solution explainability. The study concludes with a discussion of limitations and future directions, providing valuable guidelines for manufacturers aiming to enhance reactive and predictive maintenance strategies.
Suggested Citation
Kendrik Yan Hong Lim & Theresia Stefanny Yosal & Chun-Hsien Chen & Pai Zheng & Lihui Wang & Xun Xu, 2024.
"Graph-enabled cognitive digital twins for causal inference in maintenance processes,"
International Journal of Production Research, Taylor & Francis Journals, vol. 62(13), pages 4717-4734, July.
Handle:
RePEc:taf:tprsxx:v:62:y:2024:i:13:p:4717-4734
DOI: 10.1080/00207543.2023.2274335
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tprsxx:v:62:y:2024:i:13:p:4717-4734. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TPRS20 .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.