Author
Listed:
- Bipan Zou
- Siqing Wu
- Yeming Gong
- Zhe Yuan
- Yuqian Shi
Abstract
Drones are increasingly used for last-mile delivery due to their speed and cost-effectiveness. This study focuses on a novel locker-drone delivery system, where trucks transport parcels from the warehouse to lockers, and drones complete the final delivery. This system is ideal for community and intra-facility logistics. The research optimises the network design by determining the location of lockers, the number of drones at each locker, and the assignment of demands to lockers, minimising operating costs. Both single-parcel and multi-parcel capacity drones are examined. We build an optimisation model for each system, considering drone service capacity as a critical constraint. We design an algorithm combining average sample approximation and a genetic algorithm to address demand uncertainty. The algorithm's efficiency is validated through comparative analysis with Gurobi. Numerical experiments, using real and generated data, optimise the network design. Results show that the multi-capacity drone system requires fewer lockers and drones than the single-capacity system. Although the single-capacity system yields lower drone delivery costs, it incurs higher truck delivery costs. Additionally, a comprehensive cost analysis compares the cost-efficiency of the locker-drone system with a conventional drone delivery system, revealing the cost-saving advantage of the locker-drone system.
Suggested Citation
Bipan Zou & Siqing Wu & Yeming Gong & Zhe Yuan & Yuqian Shi, 2024.
"Delivery network design of a locker-drone delivery system,"
International Journal of Production Research, Taylor & Francis Journals, vol. 62(11), pages 4097-4121, June.
Handle:
RePEc:taf:tprsxx:v:62:y:2024:i:11:p:4097-4121
DOI: 10.1080/00207543.2023.2254402
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tprsxx:v:62:y:2024:i:11:p:4097-4121. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TPRS20 .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.