Author
Listed:
- Ann-Louise Andersen
- Thomas D. Brunoe
- Markus Thomas Bockholt
- Alessia Napoleone
- Jesper Hemdrup Kristensen
- Michele Colli
- Brian Vejrum Wæhrens
- Kjeld Nielsen
Abstract
Due to continuous focus on sustainability and circular economy, product take-back programs are becoming increasingly relevant and attractive. Thus, closed-loop manufacturing systems have to be designed and developed for disassembly, reprocessing of materials, re-assembly, and remanufacturing in a cost-efficient way. Compared to traditional manufacturing, this involves a higher need for changeability due to higher uncertainty, e.g. in terms of timing and quantity that the system needs to handle, uncertainty in quality and materials of received items, and in particular significant variety in returned items, the system should be designed to process. Therefore, the objective of this paper is to investigate how reconfigurability, as the enabler of changeability at manufacturing system level, can be utilised to aid challenges in closed-loop manufacturing systems for product take-back. Initially, insights from an industrial case are presented regarding challenges in establishing and operating closed-loop manufacturing systems for product take-back programs. Secondly, different closed-loop manufacturing concepts applying the principles of reconfigurability are proposed and evaluated in terms of cost and robustness towards the inherent uncertainties in supplied end-of-use items. The results show significant potential of utilising a modular and platform-based approach towards meeting supply uncertainties through reconfiguration, which allows for a more efficient setup for product take-back.
Suggested Citation
Ann-Louise Andersen & Thomas D. Brunoe & Markus Thomas Bockholt & Alessia Napoleone & Jesper Hemdrup Kristensen & Michele Colli & Brian Vejrum Wæhrens & Kjeld Nielsen, 2023.
"Changeable closed-loop manufacturing systems: challenges in product take-back and evaluation of reconfigurable solutions,"
International Journal of Production Research, Taylor & Francis Journals, vol. 61(3), pages 839-858, February.
Handle:
RePEc:taf:tprsxx:v:61:y:2023:i:3:p:839-858
DOI: 10.1080/00207543.2021.2017504
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tprsxx:v:61:y:2023:i:3:p:839-858. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TPRS20 .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.