IDEAS home Printed from https://ideas.repec.org/a/taf/tprsxx/v61y2023i22p7846-7865.html
   My bibliography  Save this article

Predictive maintenance for industry 5.0: behavioural inquiries from a work system perspective

Author

Listed:
  • Bas van Oudenhoven
  • Philippe Van de Calseyde
  • Rob Basten
  • Evangelia Demerouti

Abstract

Predictive Maintenance (PdM) solutions assist decision-makers by predicting equipment health and scheduling maintenance actions, but their implementation in industry remains problematic. Specifically, prior research repeatedly indicates that decision-makers often refuse to adopt the data-driven, system-generated advice in their working procedures. In this paper, we address these acceptance issues by studying how PdM implementation changes the nature of decision-makers’ work and how these changes affect their acceptance of PdM systems. We build on the human-centric Smith-Carayon Work System model to synthesise literature from research areas where system acceptance has been explored in more detail. Consequently, we expand the maintenance literature by investigating the human-, task-, and organisational characteristics of PdM implementation. Following the literature review, we distil ten propositions regarding decision-making behaviour in PdM settings. Next, we verify each proposition’s relevance through in-depth interviews with experts from both academia and industry. Based on the propositions and interviews, we identify four factors that facilitate PdM adoption: trust between decision-maker and model (maker), control in the decision-making process, availability of sufficient cognitive resources, and proper organisational allocation of decision-making. Our results contribute to a fundamental understanding of acceptance behaviour in a PdM context and provide recommendations to increase the effectiveness of PdM implementations.

Suggested Citation

  • Bas van Oudenhoven & Philippe Van de Calseyde & Rob Basten & Evangelia Demerouti, 2023. "Predictive maintenance for industry 5.0: behavioural inquiries from a work system perspective," International Journal of Production Research, Taylor & Francis Journals, vol. 61(22), pages 7846-7865, November.
  • Handle: RePEc:taf:tprsxx:v:61:y:2023:i:22:p:7846-7865
    DOI: 10.1080/00207543.2022.2154403
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207543.2022.2154403
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207543.2022.2154403?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mario Passalacqua & Robert Pellerin & Florian Magnani & Philippe Doyon-Poulin & Laurène Del-Aguila & Jared Boasen & Pierre-Majorique Léger, 2024. "Human-centred AI in industry 5.0: a systematic review," Post-Print hal-04723054, HAL.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tprsxx:v:61:y:2023:i:22:p:7846-7865. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TPRS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.