IDEAS home Printed from https://ideas.repec.org/a/taf/tprsxx/v61y2023i20p7151-7179.html
   My bibliography  Save this article

A review on reinforcement learning algorithms and applications in supply chain management

Author

Listed:
  • Benjamin Rolf
  • Ilya Jackson
  • Marcel Müller
  • Sebastian Lang
  • Tobias Reggelin
  • Dmitry Ivanov

Abstract

Decision-making in supply chains is challenged by high complexity, a combination of continuous and discrete processes, integrated and interdependent operations, dynamics, and adaptability. The rapidly increasing data availability, computing power and intelligent algorithms unveil new potentials in adaptive data-driven decision-making. Reinforcement Learning, a class of machine learning algorithms, is one of the data-driven methods. This semi-systematic literature review explores the current state of the art of reinforcement learning in supply chain management (SCM) and proposes a classification framework. The framework classifies academic papers based on supply chain drivers, algorithms, data sources, and industrial sectors. The conducted review revealed a few critical insights. First, the classic Q-learning algorithm is still the most popular one. Second, inventory management is the most common application of reinforcement learning in supply chains, as it is a pivotal element of supply chain synchronisation. Last, most reviewed papers address toy-like SCM problems driven by artificial data. Therefore, shifting to industry-scale problems will be a crucial challenge in the next years. If this shift is successful, the vision of data-driven decision-making in real-time could become a reality.

Suggested Citation

  • Benjamin Rolf & Ilya Jackson & Marcel Müller & Sebastian Lang & Tobias Reggelin & Dmitry Ivanov, 2023. "A review on reinforcement learning algorithms and applications in supply chain management," International Journal of Production Research, Taylor & Francis Journals, vol. 61(20), pages 7151-7179, October.
  • Handle: RePEc:taf:tprsxx:v:61:y:2023:i:20:p:7151-7179
    DOI: 10.1080/00207543.2022.2140221
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207543.2022.2140221
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207543.2022.2140221?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Kunpeng & Liu, Tengbo & Ram Kumar, P.N. & Han, Xuefang, 2024. "A reinforcement learning-based hyper-heuristic for AGV task assignment and route planning in parts-to-picker warehouses," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 185(C).
    2. Muriel, Juan E. & Zhang, Lele & Fransoo, Jan C. & Villegas, Juan G., 2024. "A reinforcement learning framework for improving parking decisions in last-mile delivery," Other publications TiSEM b3811dad-50fa-486b-8255-3, Tilburg University, School of Economics and Management.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tprsxx:v:61:y:2023:i:20:p:7151-7179. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TPRS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.