Author
Listed:
- Mingdong Li
- Shanhe Lou
- Yicong Gao
- Hao Zheng
- Bingtao Hu
- Jianrong Tan
Abstract
Conceptual design is a pivotal stage of new product development. The function-behaviour-structure framework is adopted in this stage to help designers search design space and generate conceptual solutions iteratively. Computer-aided methods developed within this framework will yield significant insight into facilitating the cognitive activities of designers. In order to solve the mapping process from behaviours to structures which is a typical constraint satisfaction problem, a cerebellar operant conditioning-inspired constraint satisfaction approach is proposed in this paper. The design constraints-driven operant conditioning and its regulation mechanism by the cerebellum are analysed for the first time. Proposition logic is applied to transfer the constraint satisfaction problem into a propositional satisfiability problem while an undirected graph is utilised to model design space. Inspired by the modularised cerebellar structure, a modularised constraint satisfaction neural network is constructed to determine the satisfiability of design problems. Conceptual solutions can be generated by clustering the embedding of nodes in this network. The proposed approach imitates the design constraint-driven operant conditioning to narrow down design space without assigning specific values to design components. It reduces design iterations and avoids combinatorial explosions during conceptual design.
Suggested Citation
Mingdong Li & Shanhe Lou & Yicong Gao & Hao Zheng & Bingtao Hu & Jianrong Tan, 2023.
"A cerebellar operant conditioning-inspired constraint satisfaction approach for product design concept generation,"
International Journal of Production Research, Taylor & Francis Journals, vol. 61(17), pages 5822-5841, September.
Handle:
RePEc:taf:tprsxx:v:61:y:2023:i:17:p:5822-5841
DOI: 10.1080/00207543.2022.2116734
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tprsxx:v:61:y:2023:i:17:p:5822-5841. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TPRS20 .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.