IDEAS home Printed from https://ideas.repec.org/a/taf/tprsxx/v60y2022i9p2802-2815.html
   My bibliography  Save this article

Tolerance estimation and metrology for reverse engineering based remanufacturing systems

Author

Listed:
  • Zhaohui Geng
  • Bopaya Bidanda

Abstract

Tolerances are critical to the product’s design, manufacturing, and quality. However, tolerances are often overlooked in a reverse engineering (RE) process for industrial applications, especially in legacy parts or spare parts remanufacturing. Ignoring tolerances could either unnecessarily call for high precision remanufacturing processes or make the reproduced parts unqualified. Additive manufacturing (AM) techniques are used in remanufacturing applications because of their ability to manufacturing intricated parts. Due to its layer-by-layer fabrication nature, the metrology for AM-created parts is drastically different when compared to traditional feature-generation processes. In this study, we first propose a novel way to classify manufacturing processes based on whether they directly identify or generate features, which could profoundly affect their metrology tools. Next, a systematic geometric inspection and tolerance estimation methodology for the RE system is proposed. A set of tools is developed to extract various geometric dimensional values from the point clouds based on their tolerancing types. Moreover, based on the domain knowledge in production process design and planning, methods are developed to estimate empirical tolerances from a small batch of legacy parts. Comparisons of empirical tolerances of real machined parts to their designed tolerances are presented to evaluate the performance of the proposed framework.

Suggested Citation

  • Zhaohui Geng & Bopaya Bidanda, 2022. "Tolerance estimation and metrology for reverse engineering based remanufacturing systems," International Journal of Production Research, Taylor & Francis Journals, vol. 60(9), pages 2802-2815, May.
  • Handle: RePEc:taf:tprsxx:v:60:y:2022:i:9:p:2802-2815
    DOI: 10.1080/00207543.2021.1904158
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207543.2021.1904158
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207543.2021.1904158?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marić, Josip & Opazo-Basáez, Marco & Vlačić, Božidar & Dabić, Marina, 2023. "Innovation management of three-dimensional printing (3DP) technology: Disclosing insights from existing literature and determining future research streams," Technological Forecasting and Social Change, Elsevier, vol. 193(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tprsxx:v:60:y:2022:i:9:p:2802-2815. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TPRS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.