IDEAS home Printed from https://ideas.repec.org/a/taf/tprsxx/v60y2022i7p2346-2368.html
   My bibliography  Save this article

Reinforcement learning for robotic flow shop scheduling with processing time variations

Author

Listed:
  • Jun-Ho Lee
  • Hyun-Jung Kim

Abstract

We address a robotic flow shop scheduling problem where two part types are processed on each given set of dedicated machines. A single robot moving on a fixed rail transports one part at a time, and the processing times of the parts vary on the machines within a given time interval. We use a reinforcement learning (RL) approach to obtain efficient robot task sequences to minimise makespan. We model the problem with a Petri net used for a RLenvironment and develop a lower bound for the makespan. We then define states, actions, and rewards based on the Petri net model; further, we show that the RL approach works better than the first-in-first-out (FIFO) rule and the reverse sequence (RS), which is extensively used for cyclic scheduling of a robotic flow shop; moreover, the gap between the makespan from the proposed algorithm and a lower bound is not large; finally, the makespan from the RL method is compared to an optimal solution in a relaxed problem. This research shows the applicability of RL for the scheduling of robotic flow shops and its efficiency by comparing it to FIFO, RS and a lower bound. This work can be easily extended to several other variants of robotic flow shop scheduling problems.

Suggested Citation

  • Jun-Ho Lee & Hyun-Jung Kim, 2022. "Reinforcement learning for robotic flow shop scheduling with processing time variations," International Journal of Production Research, Taylor & Francis Journals, vol. 60(7), pages 2346-2368, April.
  • Handle: RePEc:taf:tprsxx:v:60:y:2022:i:7:p:2346-2368
    DOI: 10.1080/00207543.2021.1887533
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207543.2021.1887533
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207543.2021.1887533?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Victor Fernandez-Viagas & Luis Sanchez-Mediano & Alvaro Angulo-Cortes & David Gomez-Medina & Jose Manuel Molina-Pariente, 2022. "The Permutation Flow Shop Scheduling Problem with Human Resources: MILP Models, Decoding Procedures, NEH-Based Heuristics, and an Iterated Greedy Algorithm," Mathematics, MDPI, vol. 10(19), pages 1-32, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tprsxx:v:60:y:2022:i:7:p:2346-2368. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TPRS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.