IDEAS home Printed from https://ideas.repec.org/a/taf/tprsxx/v60y2022i1p388-401.html
   My bibliography  Save this article

Tailoring inventory classification to industry applications: the benefits of understandable machine learning

Author

Listed:
  • Josef Svoboda
  • Stefan Minner

Abstract

Supply chain segmentation and inventory classification, specifically, are considered a competitive advantage in many industries. Approaches like the ABC-XYZ analysis are commonly used in practice to classify SKUs based on simple rules for ranking even though simplified rules-of-thumb may lead to sub-optimal decisions and higher costs. We thus propose a cost-based, multi-dimensional inventory classification scheme for assigning SKUs to classes of replenishment policies that prescribe a group service level, a demand distribution, and an inventory control rule. We further provide an extension for classification under an overall service constraint. Our methodological approach is based on machine learning classifiers and we employ a genetic algorithm to train cost-minimising decision trees which allow for easy understanding and reproduction of classification decisions. Cost- and operational focus, simple application, and interpretability are our main contributions to the inventory classification literature. We evaluate the approach on three industry data sets and show that the classification trees result in an average cost increase of only 1.01% (3.70% with an overall service constraint) over the cost-optimal classification, where no tree structure is enforced. Once trees are constructed, unseen data can be classified out-of-sample with an average cost increase of 1.85% (7.68%) over the optimal cost of classification.

Suggested Citation

  • Josef Svoboda & Stefan Minner, 2022. "Tailoring inventory classification to industry applications: the benefits of understandable machine learning," International Journal of Production Research, Taylor & Francis Journals, vol. 60(1), pages 388-401, January.
  • Handle: RePEc:taf:tprsxx:v:60:y:2022:i:1:p:388-401
    DOI: 10.1080/00207543.2021.1959078
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207543.2021.1959078
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207543.2021.1959078?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tprsxx:v:60:y:2022:i:1:p:388-401. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TPRS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.