IDEAS home Printed from https://ideas.repec.org/a/taf/tprsxx/v59y2021i7p2157-2176.html
   My bibliography  Save this article

Crowdsource-enabled integrated production and transportation scheduling for smart city logistics

Author

Listed:
  • Xin Feng
  • Feng Chu
  • Chengbin Chu
  • Yufei Huang

Abstract

With city logistics becoming more and more important, increasing attention has been paid to the ‘last-mile delivery’ in urban areas. We investigate a novel crowdsource-enabled integrated production and transportation scheduling problem in the paper. The problem is first formulated into a mixed-integer linear program and its strong NP-hardness is proved. To better understand this complex problem, two sub-problems: a production and transportation scheduling problem and a crowdsourced bid selection problem are analysed. Based on problem properties, a Genetic Algorithm (GA) and a lower bound (LB) are developed to solve the original problem. Experimental results with up to 100 customers show that the GA outperforms the well-known commercial MIP solver CPLEX. Especially, (1) the GA can yield near-optimal solutions for all the tested instances with an average gap of 10.17% from the lower bound, while CPLEX provides feasible solutions only for instances with no more than 30 customers; (2) the average computation time of the GA is only 0.93% of that required by CPLEX; Besides, sensitivity analysis demonstrates advantages of introducing crowdsourced delivery into city logistics.

Suggested Citation

  • Xin Feng & Feng Chu & Chengbin Chu & Yufei Huang, 2021. "Crowdsource-enabled integrated production and transportation scheduling for smart city logistics," International Journal of Production Research, Taylor & Francis Journals, vol. 59(7), pages 2157-2176, April.
  • Handle: RePEc:taf:tprsxx:v:59:y:2021:i:7:p:2157-2176
    DOI: 10.1080/00207543.2020.1808258
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207543.2020.1808258
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207543.2020.1808258?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiao, Haohan & Xu, Min & Wang, Shuaian, 2023. "A game-theoretic model for crowd-shipping operations with profit improvement strategies," International Journal of Production Economics, Elsevier, vol. 262(C).
    2. Berghman, Lotte & Kergosien, Yannick & Billaut, Jean-Charles, 2023. "A review on integrated scheduling and outbound vehicle routing problems," European Journal of Operational Research, Elsevier, vol. 311(1), pages 1-23.
    3. Su, E. & Qin, Hu & Li, Jiliu & Pan, Kai, 2023. "An exact algorithm for the pickup and delivery problem with crowdsourced bids and transshipment," Transportation Research Part B: Methodological, Elsevier, vol. 177(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tprsxx:v:59:y:2021:i:7:p:2157-2176. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TPRS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.