Author
Listed:
- Juri Reich
- Aseem Kinra
- Herbert Kotzab
- Xavier Brusset
Abstract
Integrating a broad range of information types and finding trade-offs between conflicting goals is a challenge in global supply chain network design (GSCND). Effective decision support systems (DSS) should be user-friendly, provide transparency, and support human judgement. There is a wide range of optimisation models that aim to improve the outcome of network design decisions. However, their practical performance often remains unknown, as their implementation into the managerial decision process is largely neglected. Such theory-driven models usually focus on single aspects of the decision, without being able to accommodate the practical problem comprehensively. We employ the CIMO approach to resolve the issue and contribute by showing how an integration involving these methods can be useful for managers once the proper knowledge transfer has been effectuated. An innovative decision support framework, which combines mixed-integer linear programming, the Analytical Hierarchy Process, and the Pareto front is created and analysed during a case study in the med-tech industry. Results show that the framework accommodates managerial experience, integrates qualitative as well as quantitative criteria, and provides transparency over the entire range of efficient solutions. The framework and application results contribute towards the development of more flexible and easy-to-use decision support systems for GSCND.
Suggested Citation
Juri Reich & Aseem Kinra & Herbert Kotzab & Xavier Brusset, 2021.
"Strategic global supply chain network design – how decision analysis combining MILP and AHP on a Pareto front can improve decision-making,"
International Journal of Production Research, Taylor & Francis Journals, vol. 59(5), pages 1557-1572, March.
Handle:
RePEc:taf:tprsxx:v:59:y:2021:i:5:p:1557-1572
DOI: 10.1080/00207543.2020.1847341
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tprsxx:v:59:y:2021:i:5:p:1557-1572. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TPRS20 .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.