IDEAS home Printed from https://ideas.repec.org/a/taf/tprsxx/v59y2021i23p7266-7282.html
   My bibliography  Save this article

Effective heuristics and metaheuristics to minimise total tardiness for the distributed permutation flowshop scheduling problem

Author

Listed:
  • Ankit Khare
  • Sunil Agrawal

Abstract

During recent years, the distributed permutation flowshop scheduling problem (DPFSP) has become a very active area of research. However, minimising total tardiness in DPFSP, a very essential and relevant objective for today's customer-orientated market, has not been studied much. In this paper, we address the DPFSP with the total tardiness criterion. We present a mixed-integer linear programming model, two heuristics, hybrid discrete Harris hawks optimisation and an enhanced variant of iterated greedy algorithm to solve the considered problem. Problem-specific knowledge is explored and effective technologies, such as path relinking and random sub-sequence/single-point local search, are employed to improve the presented algorithms. The operators and parameters of the algorithms are analysed and calibrated using the design of experiments. To evaluate the performance, the well-known benchmark problem set of Naderi and Ruiz for DPFSP is extended with due dates. We compare the presented algorithms against seven other well-known meta-heuristics from the literature. Statistically sound results demonstrate the effectiveness of the presented algorithms for the considered problem.

Suggested Citation

  • Ankit Khare & Sunil Agrawal, 2021. "Effective heuristics and metaheuristics to minimise total tardiness for the distributed permutation flowshop scheduling problem," International Journal of Production Research, Taylor & Francis Journals, vol. 59(23), pages 7266-7282, December.
  • Handle: RePEc:taf:tprsxx:v:59:y:2021:i:23:p:7266-7282
    DOI: 10.1080/00207543.2020.1837982
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207543.2020.1837982
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207543.2020.1837982?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. He, Xuan & Pan, Quan-Ke & Gao, Liang & Neufeld, Janis S. & Gupta, Jatinder N.D., 2024. "Historical information based iterated greedy algorithm for distributed flowshop group scheduling problem with sequence-dependent setup times," Omega, Elsevier, vol. 123(C).
    2. Perez-Gonzalez, Paz & Framinan, Jose M., 2024. "A review and classification on distributed permutation flowshop scheduling problems," European Journal of Operational Research, Elsevier, vol. 312(1), pages 1-21.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tprsxx:v:59:y:2021:i:23:p:7266-7282. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TPRS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.