IDEAS home Printed from https://ideas.repec.org/a/taf/tprsxx/v59y2021i19p5790-5808.html
   My bibliography  Save this article

Reactive scheduling approach for solving a realistic flexible job shop scheduling problem

Author

Listed:
  • B. Mihoubi
  • B. Bouzouia
  • M. Gaham

Abstract

Reactive Scheduling (RS) and the realistic Flexible Job Shop Scheduling Problem (FJSSP) are of major importance for the implementation of real-world manufacturing systems. The present study proposes a scheduling rules-based surrogate assisted simulation-optimisation approach for solving a combinatorial optimisation problem related to a realistic FJSSP. The proposed approach aims to capture the dynamic nature of the FJSSP and to balance both short-term reactivity facing repetitive perturbations and the overall performance of manufacturing systems. Besides and to enhance the optimisation process, a GA-based computational procedure allows managing the use of a hybrid neuronal surrogate and DES model for the accurate and fast calculation of the fitness function, considering the Makespan minimisation criterion and dealing with rush orders. The approach is applied to a highly automated Flexible robotised Manufacturing System (FMS) integrating different realistic and representative constraints to the classical FJSSP. Computational simulations and comparisons demonstrate that the proposed approach shows competitive performances compared to other resolution models, considering obtained solutions quality and short-term reactivity. The proposed resolution model provides technical tools for future control systems and allows for the practical implementation of customised assembly systems in Industry 4.0, relying on innovative emerging technologies.

Suggested Citation

  • B. Mihoubi & B. Bouzouia & M. Gaham, 2021. "Reactive scheduling approach for solving a realistic flexible job shop scheduling problem," International Journal of Production Research, Taylor & Francis Journals, vol. 59(19), pages 5790-5808, October.
  • Handle: RePEc:taf:tprsxx:v:59:y:2021:i:19:p:5790-5808
    DOI: 10.1080/00207543.2020.1790686
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207543.2020.1790686
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207543.2020.1790686?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Máté Hegyháti & Krisztián Attila Bakon & Tibor Holczinger, 2023. "Optimization with uncertainties: a scheduling example," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 31(4), pages 1239-1263, December.
    2. Rami Naimi & Maroua Nouiri & Olivier Cardin, 2021. "A Q-Learning Rescheduling Approach to the Flexible Job Shop Problem Combining Energy and Productivity Objectives," Sustainability, MDPI, vol. 13(23), pages 1-36, November.
    3. Cannavacciuolo, Lorella & Ferraro, Giovanna & Ponsiglione, Cristina & Primario, Simonetta & Quinto, Ivana, 2023. "Technological innovation-enabling industry 4.0 paradigm: A systematic literature review," Technovation, Elsevier, vol. 124(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tprsxx:v:59:y:2021:i:19:p:5790-5808. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TPRS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.