IDEAS home Printed from https://ideas.repec.org/a/taf/tprsxx/v59y2021i18p5592-5608.html
   My bibliography  Save this article

An improved gravitational search algorithm to the hybrid flowshop with unrelated parallel machines scheduling problem

Author

Listed:
  • Cuiwen Cao
  • Yao Zhang
  • Xingsheng Gu
  • Dan Li
  • Jie Li

Abstract

The hybrid flowshop scheduling problem with unrelated parallel machines exists in many industrial manufacturers, which is an NP-hard combinatorial optimisation problem. To solve this problem more effectively, an improved gravitational search (IGS) algorithm is proposed which combines three strategies: generate new individuals using the mutation strategy of the standard differential evolution (DE) algorithm and preserve the optimal solution via a greedy strategy; substitute the exponential gravitational constant of the standard gravitational search (GS) algorithm with a linear function; improve the velocity update formula of the standard GS algorithm by mixing an adaptive weight and the global search strategy of the standard particle swarm optimisation (PSO) algorithm. Benchmark examples are solved to demonstrate the proposed IGS algorithm is superior to the standard genetic algorithm, DE, GS, DE with local search, estimation of distribution algorithm and artificial bee colony algorithms. Two more examples from a real-world water-meter manufacturing enterprise are effectively solved.

Suggested Citation

  • Cuiwen Cao & Yao Zhang & Xingsheng Gu & Dan Li & Jie Li, 2021. "An improved gravitational search algorithm to the hybrid flowshop with unrelated parallel machines scheduling problem," International Journal of Production Research, Taylor & Francis Journals, vol. 59(18), pages 5592-5608, September.
  • Handle: RePEc:taf:tprsxx:v:59:y:2021:i:18:p:5592-5608
    DOI: 10.1080/00207543.2020.1788732
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207543.2020.1788732
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207543.2020.1788732?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tprsxx:v:59:y:2021:i:18:p:5592-5608. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TPRS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.