IDEAS home Printed from https://ideas.repec.org/a/taf/tprsxx/v59y2021i16p4903-4959.html
   My bibliography  Save this article

Artificial intelligence (AI) in augmented reality (AR)-assisted manufacturing applications: a review

Author

Listed:
  • Chandan K. Sahu
  • Crystal Young
  • Rahul Rai

Abstract

Augmented reality (AR) has proven to be an invaluable interactive medium to reduce cognitive load by bridging the gap between the task-at-hand and relevant information by displaying information without disturbing the user's focus. AR is particularly useful in the manufacturing environment where a diverse set of tasks such as assembly and maintenance must be performed in the most cost-effective and efficient manner possible. While AR systems have seen immense research innovation in recent years, the current strategies utilised in AR for camera calibration, detection, tracking, camera position and orientation (pose) estimation, inverse rendering, procedure storage, virtual object creation, registration, and rendering are still mostly dominated by traditional non-AI approaches. This restricts their practicability to controlled environments with limited variations in the scene. Classical AR methods can be greatly improved through the incorporation of various AI strategies like deep learning, ontology, and expert systems for adapting to broader scene variations and user preferences. This research work provides a review of current AR strategies, critical appraisal for these strategies, and potential AI solutions for every component of the computational pipeline of AR systems. Given the review of current work in both fields, future research work directions are also outlined.

Suggested Citation

  • Chandan K. Sahu & Crystal Young & Rahul Rai, 2021. "Artificial intelligence (AI) in augmented reality (AR)-assisted manufacturing applications: a review," International Journal of Production Research, Taylor & Francis Journals, vol. 59(16), pages 4903-4959, August.
  • Handle: RePEc:taf:tprsxx:v:59:y:2021:i:16:p:4903-4959
    DOI: 10.1080/00207543.2020.1859636
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207543.2020.1859636
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207543.2020.1859636?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Li & Zou, Haobo & Shang, Chao & Ye, Xiaoming & Rani, Pratibha, 2023. "Adoption of information and digital technologies for sustainable smart manufacturing systems for industry 4.0 in small, medium, and micro enterprises (SMMEs)," Technological Forecasting and Social Change, Elsevier, vol. 188(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tprsxx:v:59:y:2021:i:16:p:4903-4959. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TPRS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.