IDEAS home Printed from https://ideas.repec.org/a/taf/tprsxx/v58y2020i9p2862-2884.html
   My bibliography  Save this article

Detection of interferences in an additive manufacturing process: an experimental study integrating methods of feature selection and machine learning

Author

Listed:
  • Darko Stanisavljevic
  • David Cemernek
  • Heimo Gursch
  • Günter Urak
  • Gernot Lechner

Abstract

Additive manufacturing becomes a more and more important technology for production, mainly driven by the ability to realise extremely complex structures using multiple materials but without assembly or excessive waste. Nevertheless, like any high-precision technology additive manufacturing responds to interferences during the manufacturing process. These interferences – like vibrations – might lead to deviations in product quality, becoming manifest for instance in a reduced lifetime of a product or application issues. This study targets the issue of detecting such interferences during a manufacturing process in an exemplary experimental setup. Collection of data using current sensor technology directly on a 3D-printer enables a quantitative detection of interferences. The evaluation provides insights into the effectiveness of the realised application-oriented setup, the effort required for equipping a manufacturing system with sensors, and the effort for acquisition and processing the data. These insights are of practical utility for organisations dealing with additive manufacturing: the chosen approach for detecting interferences shows promising results, reaching interference detection rates of up to 100% depending on the applied data processing configuration.

Suggested Citation

  • Darko Stanisavljevic & David Cemernek & Heimo Gursch & Günter Urak & Gernot Lechner, 2020. "Detection of interferences in an additive manufacturing process: an experimental study integrating methods of feature selection and machine learning," International Journal of Production Research, Taylor & Francis Journals, vol. 58(9), pages 2862-2884, May.
  • Handle: RePEc:taf:tprsxx:v:58:y:2020:i:9:p:2862-2884
    DOI: 10.1080/00207543.2019.1694719
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207543.2019.1694719
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207543.2019.1694719?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marić, Josip & Opazo-Basáez, Marco & Vlačić, Božidar & Dabić, Marina, 2023. "Innovation management of three-dimensional printing (3DP) technology: Disclosing insights from existing literature and determining future research streams," Technological Forecasting and Social Change, Elsevier, vol. 193(C).
    2. Ying Zhang & Mutahar Safdar & Jiarui Xie & Jinghao Li & Manuel Sage & Yaoyao Fiona Zhao, 2023. "A systematic review on data of additive manufacturing for machine learning applications: the data quality, type, preprocessing, and management," Journal of Intelligent Manufacturing, Springer, vol. 34(8), pages 3305-3340, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tprsxx:v:58:y:2020:i:9:p:2862-2884. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TPRS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.