IDEAS home Printed from https://ideas.repec.org/a/taf/tprsxx/v58y2020i9p2751-2766.html
   My bibliography  Save this article

Big data driven jobs remaining time prediction in discrete manufacturing system: a deep learning-based approach

Author

Listed:
  • Weiguang Fang
  • Yu Guo
  • Wenhe Liao
  • Karthik Ramani
  • Shaohua Huang

Abstract

Implementing advanced big data (BD) analytic is significant for successful incorporation of artificial intelligence in manufacturing. With the widespread deployment of smart sensors and internet of things (IOT) in the job shop, there is an increasing need for handling manufacturing BD for predictive manufacturing. In this study, we conceive the jobs remaining time (JRT) prediction during manufacturing execution based on deep learning (DL) with production BD. We developed a procedure for JRT prediction that includes three parts: raw data collection, candidate dataset design and predictive modelling. First, the historical production data are collected by the widely deployed IOT in the job shop. Then, the candidate dataset is formalised to capture various contributory factors for JRT prediction. Further, a DL model named stacked sparse autoencoder (S-SAE) is constructed to learn representative features from high dimensional manufacturing BD to make robust and accurate JRT prediction. Our work represents the first DL model for the JRT prediction at run time during production. The proposed methods are applied in a large-scale job shop that is equipped with 44 machine tools and produces 13 types of parts. Lastly, the experimental results show the S-SAE model has higher accuracy than previous linear regression, back-propagation network, multi-layer network and deep belief network in JRT prediction.

Suggested Citation

  • Weiguang Fang & Yu Guo & Wenhe Liao & Karthik Ramani & Shaohua Huang, 2020. "Big data driven jobs remaining time prediction in discrete manufacturing system: a deep learning-based approach," International Journal of Production Research, Taylor & Francis Journals, vol. 58(9), pages 2751-2766, May.
  • Handle: RePEc:taf:tprsxx:v:58:y:2020:i:9:p:2751-2766
    DOI: 10.1080/00207543.2019.1602744
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207543.2019.1602744
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207543.2019.1602744?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Irina Bogdana Pugna & Dana Maria Boldeanu & Mirela Gheorghe & Gabriel Cozgarea & Adrian Nicolae Cozgarea, 2022. "Management Perspectives towards the Data-Driven Organization in the Energy Sector," Energies, MDPI, vol. 15(16), pages 1-20, August.
    2. Acciarini, Chiara & Cappa, Francesco & Boccardelli, Paolo & Oriani, Raffaele, 2023. "How can organizations leverage big data to innovate their business models? A systematic literature review," Technovation, Elsevier, vol. 123(C).
    3. Bag, Surajit & Pretorius, Jan Ham Christiaan & Gupta, Shivam & Dwivedi, Yogesh K., 2021. "Role of institutional pressures and resources in the adoption of big data analytics powered artificial intelligence, sustainable manufacturing practices and circular economy capabilities," Technological Forecasting and Social Change, Elsevier, vol. 163(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tprsxx:v:58:y:2020:i:9:p:2751-2766. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TPRS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.