IDEAS home Printed from https://ideas.repec.org/a/taf/tprsxx/v58y2020i23p7094-7111.html
   My bibliography  Save this article

Cascade neural network algorithm with analytical connection weights determination for modelling operations and energy applications

Author

Listed:
  • Zhengxu Wang
  • Waqar Ahmed Khan
  • Hoi-Lam Ma
  • Xin Wen

Abstract

The performance and learning speed of the Cascade Correlation neural network (CasCor) may not be optimal because of redundant hidden units’ in the cascade architecture and the tuning of connection weights. This study explores the limitations of CasCor and its variants and proposes a novel constructive neural network (CNN). The basic idea is to compute the input connection weights by generating linearly independent hidden units from the orthogonal linear transformation, and the output connection weights by connecting hidden units in a linear relationship to the output units. The work is unique in that few attempts have been made to analytically determine the connection weights on both sides of the network. Experimental work on real energy application problems such as predicting powerplant electrical energy, predicting seismic hazards to prevent fatal accidents and reducing energy consumption by predicting building occupancy detection shows that analytically calculating the connection weights and generating non-redundant hidden units improves the convergence of the network. The proposed CNN is compared with that of the state-of-the-art machine learning algorithms. The work demonstrates that proposed CNN predicts a wide range of applications better than other methods.

Suggested Citation

  • Zhengxu Wang & Waqar Ahmed Khan & Hoi-Lam Ma & Xin Wen, 2020. "Cascade neural network algorithm with analytical connection weights determination for modelling operations and energy applications," International Journal of Production Research, Taylor & Francis Journals, vol. 58(23), pages 7094-7111, December.
  • Handle: RePEc:taf:tprsxx:v:58:y:2020:i:23:p:7094-7111
    DOI: 10.1080/00207543.2020.1764656
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207543.2020.1764656
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207543.2020.1764656?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wen, Xin & Sun, Xuting & Sun, Yige & Yue, Xiaohang, 2021. "Airline crew scheduling: Models and algorithms," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 149(C).
    2. Sun, Yige & Chung, Sai-Ho & Wen, Xin & Ma, Hoi-Lam, 2021. "Novel robotic job-shop scheduling models with deadlock and robot movement considerations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 149(C).
    3. Wen, Xin & Ma, Hoi-Lam & Chung, Sai-Ho & Khan, Waqar Ahmed, 2020. "Robust airline crew scheduling with flight flying time variability," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 144(C).
    4. Khan, Waqar Ahmed & Ma, Hoi-Lam & Ouyang, Xu & Mo, Daniel Y., 2021. "Prediction of aircraft trajectory and the associated fuel consumption using covariance bidirectional extreme learning machines," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 145(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tprsxx:v:58:y:2020:i:23:p:7094-7111. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TPRS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.