IDEAS home Printed from https://ideas.repec.org/a/taf/tprsxx/v58y2020i19p5806-5835.html
   My bibliography  Save this article

Robust disassembly line balancing with ambiguous task processing times

Author

Listed:
  • Ming Liu
  • Xin Liu
  • Feng Chu
  • Feifeng Zheng
  • Chengbin Chu

Abstract

Disassembly line balancing problem (DLBP), which is to select disassembly process, open workstations and assign selected tasks to opened workstations, plays an important role in the recycling of End Of Life products. In real-world disassembly operations, task processing times are usually stochastic due to various factors. Most related works address the uncertain processing times by assuming that the probability distribution is known and the task processing times are independent of each other. In practice, however, it is difficult to get the complete distributional information and there is always underlying correlation between the uncertain processing times. This paper investigates the DLBP with partial uncertain knowledge, i.e. the mean and covariance matrix of task processing times. A new distributionally robust formulation with a joint chance constraint is proposed. To solve the problem, an approximated mixed integer second-order cone programming (MI-SOCP) model is proposed, and a two-stage parameter-adjusting heuristic is further developed. Numerical experiments are conducted, to evaluate the performance of the proposed method. We also draw some managerial insights and consider an extension problem.

Suggested Citation

  • Ming Liu & Xin Liu & Feng Chu & Feifeng Zheng & Chengbin Chu, 2020. "Robust disassembly line balancing with ambiguous task processing times," International Journal of Production Research, Taylor & Francis Journals, vol. 58(19), pages 5806-5835, October.
  • Handle: RePEc:taf:tprsxx:v:58:y:2020:i:19:p:5806-5835
    DOI: 10.1080/00207543.2019.1659520
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207543.2019.1659520
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207543.2019.1659520?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peng Hu & Feng Chu & Yunfei Fang & Peng Wu, 2022. "Novel distribution-free model and method for stochastic disassembly line balancing with limited distributional information," Journal of Combinatorial Optimization, Springer, vol. 43(5), pages 1423-1446, July.
    2. Ming Liu & Zhongzheng Liu & Rongfan Liu & Lihua Sun, 2022. "Distribution-Free Approaches for an Integrated Cargo Routing and Empty Container Repositioning Problem with Repacking Operations in Liner Shipping Networks," Sustainability, MDPI, vol. 14(22), pages 1-25, November.
    3. Yaping Ren & Xinyu Lu & Hongfei Guo & Zhaokang Xie & Haoyang Zhang & Chaoyong Zhang, 2023. "A Review of Combinatorial Optimization Problems in Reverse Logistics and Remanufacturing for End-of-Life Products," Mathematics, MDPI, vol. 11(2), pages 1-24, January.
    4. Battaïa, Olga & Dolgui, Alexandre, 2022. "Hybridizations in line balancing problems: A comprehensive review on new trends and formulations," International Journal of Production Economics, Elsevier, vol. 250(C).
    5. Süleyman Mete & Faruk Serin & Zeynel Abidin Çil & Erkan Çelik & Eren Özceylan, 2023. "A comparative analysis of meta-heuristic methods on disassembly line balancing problem with stochastic time," Annals of Operations Research, Springer, vol. 321(1), pages 371-408, February.
    6. He, Junkai & Chu, Feng & Dolgui, Alexandre & Anjos, Miguel F., 2024. "Multi-objective disassembly line balancing and related supply chain management problems under uncertainty: Review and future trends," International Journal of Production Economics, Elsevier, vol. 272(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tprsxx:v:58:y:2020:i:19:p:5806-5835. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TPRS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.