IDEAS home Printed from https://ideas.repec.org/a/taf/tprsxx/v58y2020i17p5359-5379.html
   My bibliography  Save this article

Automated digital cause-and-effect diagrams to assist causal analysis in problem-solving: a data-driven approach

Author

Listed:
  • Zhaoguang Xu
  • Yanzhong Dang

Abstract

Causal analysis is an integral part of product quality problem-solving (QPS). Quality management within the manufacturing industry has generated a considerable amount of QPS data; while this implies a historical and extensive body of QPS experience, these valuable empirical data are not being fully utilised. Therefore, the current study proposes a method by which to mine know-why from historical empirical data, and it develops an approach for constructing digital cause-and-effect diagrams (CEDs). The K-means algorithm is first adopted to cluster the problems and causes. The random forest classifier is then selected to classify cause text into the main cause categories, which manifest as ‘rib branches’ in the CED. Based on the clustering and classification results, we obtain an abstract cause-and-effect diagram (ACED) and a detailed cause-and-effect diagram (DCED). We use the quality data of an automotive company to validate the method, and we additionally undertake a pilot run of the Fishbone Next system to demonstrate how users can obtain these two CEDs to support causal analysis in QPS. The results show that the proposed approach efficiently constructs a digital CED and thus provides quality management problem-solvers with decision support to derive the potential causes of problems, thereby improving the efficiency and effectiveness of their causal analysis initiatives.

Suggested Citation

  • Zhaoguang Xu & Yanzhong Dang, 2020. "Automated digital cause-and-effect diagrams to assist causal analysis in problem-solving: a data-driven approach," International Journal of Production Research, Taylor & Francis Journals, vol. 58(17), pages 5359-5379, September.
  • Handle: RePEc:taf:tprsxx:v:58:y:2020:i:17:p:5359-5379
    DOI: 10.1080/00207543.2020.1727043
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207543.2020.1727043
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207543.2020.1727043?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Feifeng Zheng & Zhaojie Wang & Ming Liu, 2022. "Overnight charging scheduling of battery electric buses with uncertain charging time," Operational Research, Springer, vol. 22(5), pages 4865-4903, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tprsxx:v:58:y:2020:i:17:p:5359-5379. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TPRS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.