IDEAS home Printed from https://ideas.repec.org/a/taf/tprsxx/v58y2020i15p4631-4646.html
   My bibliography  Save this article

A roadmap for Assembly 4.0: self-configuration of fixed-position assembly islands under Graduation Intelligent Manufacturing System

Author

Listed:
  • Daqiang Guo
  • Ray Y. Zhong
  • Shiquan Ling
  • Yiming Rong
  • George Q. Huang

Abstract

The layout of fixed-position assembly islands (FPAI) is widely used for producing fragile or bulky products. With the increasing customised demand and unique operation patterns, manufacturing practitioners are facing challenges on flexible and efficient production arrangement to meet customer demand, which lead to inappropriate assembly islands configuration, frequent setups and long waiting times in FPAI. Industry 4.0 comes with the promise of improved flexibility and efficiency in manufacturing. In the context of Industry 4.0, this paper proposes a 5-layer APICS (assembly layer, perception layer, interaction layer, cognition layer, and service layer) roadmap for transformation and implementation of Assembly 4.0. Following the 5-layer APICS roadmap, a Graduation Intelligent Manufacturing System (GiMS) is presented as the pioneering implementation in FPAI. A graduation-inspired assembly system is designed for FPAI at assembly layer. Internet of Things (IoT) and industrial wearable technologies are deployed for perception, connection, and collaboration among various manufacturing resources at perception and interaction layer. A self-configuration model is proposed at cognition layer for autonomously configuring optimal assembly islands and corresponding production activities to meet customer demand. Cloud-based services are developed for managers and onsite operators to facilitate their decision-making and daily operations at service layer. Finally, a demonstrative case is conducted to verify the feasibility of the proposed methods.

Suggested Citation

  • Daqiang Guo & Ray Y. Zhong & Shiquan Ling & Yiming Rong & George Q. Huang, 2020. "A roadmap for Assembly 4.0: self-configuration of fixed-position assembly islands under Graduation Intelligent Manufacturing System," International Journal of Production Research, Taylor & Francis Journals, vol. 58(15), pages 4631-4646, July.
  • Handle: RePEc:taf:tprsxx:v:58:y:2020:i:15:p:4631-4646
    DOI: 10.1080/00207543.2020.1762944
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207543.2020.1762944
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207543.2020.1762944?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Mingxing & Huang, George Q., 2021. "Production-intralogistics synchronization of industry 4.0 flexible assembly lines under graduation intelligent manufacturing system," International Journal of Production Economics, Elsevier, vol. 241(C).
    2. Guo, Daqiang & Li, Mingxing & Lyu, Zhongyuan & Kang, Kai & Wu, Wei & Zhong, Ray Y. & Huang, George Q., 2021. "Synchroperation in industry 4.0 manufacturing," International Journal of Production Economics, Elsevier, vol. 238(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tprsxx:v:58:y:2020:i:15:p:4631-4646. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TPRS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.