IDEAS home Printed from https://ideas.repec.org/a/taf/tprsxx/v58y2020i14p4406-4420.html
   My bibliography  Save this article

A hybrid artificial bee colony algorithm for flexible job shop scheduling with worker flexibility

Author

Listed:
  • Guiliang Gong
  • Raymond Chiong
  • Qianwang Deng
  • Xuran Gong

Abstract

The traditional flexible job shop scheduling problem (FJSP) considers machine flexibility but not worker flexibility. Given the influence and potential of human factors in improving production efficiency and decreasing the cost in practical production systems, we propose a mathematical model of an extended FJSP with worker flexibility (FJSPW). A hybrid artificial bee colony algorithm (HABCA) is presented to solve the proposed FJSPW. For the HABCA, effective encoding, decoding, crossover and mutation operators are designed, and a new effective local search method is developed to improve the speed and exploitation ability of the algorithm. The Taguchi method of Design of Experiments is used to obtain the best combination of key parameters of the HABCA. Extensive computational experiments carried out to compare the HABCA with some well-performing algorithms from the literature confirm that the proposed HABCA is more effective than these algorithms, especially on large-scale FJSPW instances.

Suggested Citation

  • Guiliang Gong & Raymond Chiong & Qianwang Deng & Xuran Gong, 2020. "A hybrid artificial bee colony algorithm for flexible job shop scheduling with worker flexibility," International Journal of Production Research, Taylor & Francis Journals, vol. 58(14), pages 4406-4420, July.
  • Handle: RePEc:taf:tprsxx:v:58:y:2020:i:14:p:4406-4420
    DOI: 10.1080/00207543.2019.1653504
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207543.2019.1653504
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207543.2019.1653504?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aidin Delgoshaei & Mohd Khairol Anuar Bin Mohd Ariffin & Zulkiflle B. Leman, 2022. "An Effective 4–Phased Framework for Scheduling Job-Shop Manufacturing Systems Using Weighted NSGA-II," Mathematics, MDPI, vol. 10(23), pages 1-28, December.
    2. Shoujing Zhang & Tiantian Hou & Qing Qu & Adam Glowacz & Samar M. Alqhtani & Muhammad Irfan & Grzegorz Królczyk & Zhixiong Li, 2022. "An Improved Mayfly Method to Solve Distributed Flexible Job Shop Scheduling Problem under Dual Resource Constraints," Sustainability, MDPI, vol. 14(19), pages 1-19, September.
    3. Yongjing Li & Wenhui Pei & Qi Zhang, 2022. "Improved Whale Optimization Algorithm Based on Hybrid Strategy and Its Application in Location Selection for Electric Vehicle Charging Stations," Energies, MDPI, vol. 15(19), pages 1-25, September.
    4. Mei Li & Gai-Ge Wang & Helong Yu, 2021. "Sorting-Based Discrete Artificial Bee Colony Algorithm for Solving Fuzzy Hybrid Flow Shop Green Scheduling Problem," Mathematics, MDPI, vol. 9(18), pages 1-30, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tprsxx:v:58:y:2020:i:14:p:4406-4420. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TPRS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.