IDEAS home Printed from https://ideas.repec.org/a/taf/tprsxx/v58y2020i12p3781-3799.html
   My bibliography  Save this article

Remanufacturing-oriented process planning and scheduling: mathematical modelling and evolutionary optimisation

Author

Listed:
  • Guiliang Gong
  • Qianwang Deng
  • Raymond Chiong
  • Xuran Gong
  • Hezhiyuan Huang
  • Wenwu Han

Abstract

Remanufacturing has been widely studied for its potential to achieve sustainable production in recent years. In the literature of remanufacturing research, process planning and scheduling are typically treated as two independent parts. However, these two parts are in fact interrelated and often interact with each other. Doing process planning without considering scheduling related factors can easily introduce contradictions or even infeasible solutions. In this work, we propose a mathematical model of integrated process planning and scheduling for remanufacturing (IPPSR), which simultaneously considers the process planning and scheduling problems. An effective hybrid multi-objective evolutionary algorithm (HMEA) is presented to solve the proposed IPPSR. For the HMEA, a multidimensional encoding operator is designed to get a high-quality initial population. A multidimensional crossover operator and a multidimensional mutation operator are also proposed to improve the convergence speed of the algorithm and fully exploit the solution space. Finally, a specific legalising method is used to ‘legalise’ possible infeasible solutions generated by the initialisation method and mutation operator. Extensive computational experiments carried out to compare the HMEA with some well-known algorithms confirm that the proposed HMEA is able to obtain more and better Pareto solutions for IPPSR.

Suggested Citation

  • Guiliang Gong & Qianwang Deng & Raymond Chiong & Xuran Gong & Hezhiyuan Huang & Wenwu Han, 2020. "Remanufacturing-oriented process planning and scheduling: mathematical modelling and evolutionary optimisation," International Journal of Production Research, Taylor & Francis Journals, vol. 58(12), pages 3781-3799, June.
  • Handle: RePEc:taf:tprsxx:v:58:y:2020:i:12:p:3781-3799
    DOI: 10.1080/00207543.2019.1634848
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207543.2019.1634848
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207543.2019.1634848?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qihao Liu & Xinyu Li & Liang Gao, 2021. "Mathematical modeling and a hybrid evolutionary algorithm for process planning," Journal of Intelligent Manufacturing, Springer, vol. 32(3), pages 781-797, March.
    2. Wenkang Zhang & Yufan Zheng & Rafiq Ahmad, 2023. "The integrated process planning and scheduling of flexible job-shop-type remanufacturing systems using improved artificial bee colony algorithm," Journal of Intelligent Manufacturing, Springer, vol. 34(7), pages 2963-2988, October.
    3. Mehmet Ali Soytaş & Damla Durak Uşar & Meltem Denizel, 2022. "Estimation of the static corporate sustainability interactions," International Journal of Production Research, Taylor & Francis Journals, vol. 60(4), pages 1245-1264, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tprsxx:v:58:y:2020:i:12:p:3781-3799. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TPRS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.