IDEAS home Printed from https://ideas.repec.org/a/taf/tprsxx/v57y2019i8p2531-2547.html
   My bibliography  Save this article

Multi-objective sustainable process plan generation in a reconfigurable manufacturing environment: exact and adapted evolutionary approaches

Author

Listed:
  • Faycal A. Touzout
  • Lyes Benyoucef

Abstract

Achieving competitiveness in nowadays manufacturing market goes through being cost and time-efficient as well as environmentally harmless. Reconfigurable manufacturing system (RMS) is a paradigm that is able to meet these challenges due to its scalability and integrability. In this paper, we aim to solve the multi-objective sustainable process plan generation problem in a reconfigurable environment. In addition to the total production cost and the completion time, we use the amount of greenhouse gases (GHG) emitted during the manufacturing process as a sustainability criterion. We propose an iterative multi-objective integer linear programming (I-MOILP) approach and its comparison with adapted versions of the two well-known evolutionary algorithms, respectively, the Archived Multi-Objective Simulated Annealing (AMOSA) and the Non-dominated Sorting Genetic Algorithm (NSGA-II). Moreover, we study the influence of the probabilities of genetic operators on the convergence of the adapted NSGA-II. To illustrate the applicability of the three approaches, an example is presented and obtained numerical results analysed.

Suggested Citation

  • Faycal A. Touzout & Lyes Benyoucef, 2019. "Multi-objective sustainable process plan generation in a reconfigurable manufacturing environment: exact and adapted evolutionary approaches," International Journal of Production Research, Taylor & Francis Journals, vol. 57(8), pages 2531-2547, April.
  • Handle: RePEc:taf:tprsxx:v:57:y:2019:i:8:p:2531-2547
    DOI: 10.1080/00207543.2018.1522006
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207543.2018.1522006
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207543.2018.1522006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrzej Bożek, 2020. "Energy Cost-Efficient Task Positioning in Manufacturing Systems," Energies, MDPI, vol. 13(19), pages 1-21, September.
    2. Qihao Liu & Xinyu Li & Liang Gao, 2021. "Mathematical modeling and a hybrid evolutionary algorithm for process planning," Journal of Intelligent Manufacturing, Springer, vol. 32(3), pages 781-797, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tprsxx:v:57:y:2019:i:8:p:2531-2547. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TPRS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.